Memory-efficient dynamic programming backtrace and pairwise local sequence alignment

被引:7
作者
Newberg, Lee A. [1 ,2 ]
机构
[1] New York State Dept Hlth, Ctr Bioinformat, Wadsworth Ctr, Albany, NY 12208 USA
[2] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA
关键词
D O I
10.1093/bioinformatics/btn308
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: A backtrace through a dynamic programming algorithms intermediate results in search of an optimal path, or to sample paths according to an implied probability distribution, or as the second stage of a forwardbackward algorithm, is a task of fundamental importance in computational biology. When there is insuf.cient space to store all intermediate results in high-speed memory (e.g. cache) existing approaches store selected stages of the computation, and recompute missing values from these checkpoints on an as-needed basis. Results: Here we present an optimal checkpointing strategy, and demonstrate its utility with pairwise local sequence alignment of sequences of length 10 000.
引用
收藏
页码:1772 / 1778
页数:7
相关论文
共 50 条
[41]   Parallelizing Optimal Multiple Sequence Alignment by Dynamic Programming [J].
Helal, Manal ;
El-Gindy, Hossam ;
Mullin, Lenore ;
Gaeta, Bruno .
PROCEEDINGS OF THE 2008 INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS, 2008, :669-+
[42]   Memory-efficient tensor parallelism for long-sequence Transformer training [J].
Liang, Peng ;
Qiao, Linbo ;
Shi, Yanqi ;
Zheng, Hao ;
Tang, Yu ;
Li, Dongsheng .
FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2025, 26 (05) :770-787
[43]   Adaptive Learning of Rank-One Models for Efficient Pairwise Sequence Alignment [J].
Kamath, Govinda M. ;
Baharav, Tavor Z. ;
Shomorony, Ilan .
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
[44]   NeuroFlux: Memory-Efficient CNN Training Using Adaptive Local Learning [J].
Saikumar, Dhananjay ;
Varghese, Blesson .
PROCEEDINGS OF THE 2024 EUROPEAN CONFERENCE ON COMPUTER SYSTEMS, EUROSYS 2024, 2024, :999-1015
[45]   Dynamic programming based approximation algorithms for sequence alignment with constraints [J].
Arslan, AN ;
Egecioglu, Ö .
INFORMS JOURNAL ON COMPUTING, 2004, 16 (04) :441-458
[46]   Multiple sequence alignment based on dynamic programming using FPGA [J].
Masuno, Shingo ;
Maruyama, Tsutomu ;
Yamaguchi, Yoshiki ;
Konagaya, Akihiko .
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2007, E90D (12) :1939-1946
[47]   SALT: a fast, memory-efficient and SNP-aware short read alignment tool [J].
Quan, Wei ;
Liu, Bo ;
Wang, Yadong .
2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, :1774-1779
[48]   Conservative, Non-Conservative and Average Pairwise Statistical Significance of Local Sequence Alignment [J].
Agrawal, Ankit ;
Huang, Xiaoqiu .
2008 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, PROCEEDINGS, 2008, :433-436
[49]   Pairwise local structural alignment of RNA sequences with sequence similarity less than 40% [J].
Havgaard, JH ;
Lyngso, RB ;
Stormo, GD ;
Gorodkin, J .
BIOINFORMATICS, 2005, 21 (09) :1815-1824
[50]   Twadn: an efficient alignment algorithm based on time warping for pairwise dynamic networks [J].
Zhong, Yuanke ;
Li, Jing ;
He, Junhao ;
Gao, Yiqun ;
Liu, Jie ;
Wang, Jingru ;
Shang, Xuequn ;
Hu, Jialu .
BMC BIOINFORMATICS, 2020, 21 (Suppl 13)