TWIN ROMAN DOMINATION NUMBER OF A DIGRAPH

被引:0
作者
Ahangar, H. Abdollahzadeh [1 ]
Amjadi, J. [2 ]
Sheikholeslami, S. M. [2 ]
Samodivkin, V. [3 ]
Volkmann, L. [4 ]
机构
[1] Babol Univ Technol, Dept Basic Sci, Babol Sar, Iran
[2] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[3] Univ Architecture Civil Engn & Geodesy, Dept Math, Hristo Smirnenski 1 Blv, Sofia 1046, Bulgaria
[4] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
twin Roman dominating function; twin Roman domination number; Roman dominating function; Roman domination number; digraph;
D O I
10.18514/MMN.2016.1178
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a finite and simple digraph with vertex set V(D). A twin Roman dominating function (TRDF) on D is a labeling f : V(D) -> {0, 1, 2} such that every vertex with label 0 has an P in-neighbor and out-neighbor with label 2. The weight of a TRDF f is the value omega(f) = Sigma(v is an element of V(D)) f(v). The twin Roman domination number of a digraph D, denoted by gamma(R)*(D), equals the minimum weight of a TRDF on D. In this paper we initiate the study of the twin Roman domination number in digraphs. In particular, we present sharp bounds for gamma(R)*(D) and determine the exact value of the twin Roman domination number for some classes of digraphs.
引用
收藏
页码:3 / 14
页数:12
相关论文
共 8 条
[1]  
[Anonymous], 2000, INTRO GRAPH THEORY
[2]   The k-tuple twin domination in de Bruijn and Kautz digraphs [J].
Araki, Toru .
DISCRETE MATHEMATICS, 2008, 308 (24) :6406-6413
[3]   TWIN DOMINATION AND TWIN IRREDUNDANCE IN DIGRAPHS [J].
Arumugam, S. ;
Ebadi, Karam ;
Sathikala, L. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2013, 7 (02) :275-284
[4]  
Chartrand G, 2003, ARS COMBINATORIA, V67, P105
[5]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22
[6]  
Kamaraj M., 2011, INT J COMB GRAPH THE, V4, P103
[7]  
Pandian K. Muthu, 2012, INT J MATH ARCH, V3, P2375
[8]  
Sheikholeslami S., 2011, Acta Univ. Apulensis Math. Inform., V27, P77