Functional Cramer-Rao bounds and Stein estimators in Sobolev spaces, for Brownian motion and Cox processes

被引:1
作者
Musta, Eni [1 ]
Pratelli, Maurizio [2 ]
Trevisan, Dario [2 ]
机构
[1] Delft Univ Technol, Delft, Netherlands
[2] Univ Pisa, Pisa, Italy
关键词
Cramer-Rao bound; Stein phenomenon; Malliavin calculus; Cox model; MALLIAVIN CALCULUS;
D O I
10.1016/j.jmva.2016.10.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the problems of drift estimation for a shifted Brownian motion and intensity estimation for a Cox process on a finite interval [0, T], when the risk is given by the energy functional associated to some fractional Sobolev space H-0(1) subset of W-alpha,W-2 subset of L-2. In both situations, Cramer-Rao lower bounds are obtained, entailing in particular that no unbiased estimators (not necessarily adapted) with finite risk in H-0(1) exist. By Malliavin calculus techniques, we also study super-efficient Stein type estimators (in the Gaussian case). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:135 / 146
页数:12
相关论文
共 13 条
[1]   STEIN ESTIMATION OF THE INTENSITY OF A SPATIAL HOMOGENEOUS POISSON POINT PROCESS [J].
Clausel, Marianne ;
Coeurjolly, Jean-Francois ;
Lelong, Jerome .
ANNALS OF APPLIED PROBABILITY, 2016, 26 (03) :1495-1534
[2]  
Corcuera JM, 2011, PROG PROBAB, V63, P59
[3]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[4]   Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach [J].
Gobet, E .
BERNOULLI, 2001, 7 (06) :899-912
[5]  
James W., 1961, P 4 BERK S MATH STAT, V1, P361, DOI DOI 10.1007/978-1-4612-0919-5
[6]  
Jeanblanc M, 2009, SPRINGER FINANC, P1, DOI 10.1007/978-1-84628-737-4
[7]   Remarks on parameter estimation for the drift of fractional brownian sheet [J].
Liu J. .
Acta Mathematica Vietnamica, 2013, 38 (2) :241-253
[8]  
Nourdin I., 2012, NORMAL APPROXIMATION, V192
[9]  
Nualart D., 2006, PROBABILITY ITS APPL, V2nd
[10]   STEIN ESTIMATION FOR THE DRIFT OF GAUSSIAN PROCESSES USING THE MALLIAVIN CALCULUS [J].
Privault, Nicolas ;
Reveillac, Anthony .
ANNALS OF STATISTICS, 2008, 36 (05) :2531-2550