Molecularly ordered composites of polyvinylimidazole-[Os(bipyridine)2Cl] (PVI-[Os(bpy)2Cl]) and glucose oxidase (GOD) are assembled inside a film of aligned carbon nanotubes. The structure of the prepared GOD/PVI-[Os(bpy)2Cl]/CNT composite film is entirely uniform and stable; more than 90% bioelectrocatalytic activity could be maintained even after storage for 6 d. Owing to the ideal positional relationship achieved between enzyme, mediator, and electrode, the prepared film shows a high bioelectrocatalytic activity for glucose oxidation (ca. 15 mA cm-2 at 25 degrees C) with an extremely high electron-transfer turnover rate (ca. 650 s-1) comparable to the value for GOD solutions, indicating almost every enzyme molecule entrapped within the ensemble (ca. 3 x 1012 enzymes in a 1 mm x 1 mm film) can work to the fullest extent. This free-standing, flexible composite film can be used by winding on a needle device; as an example, a self-powered sugar monitor is demonstrated.