Zero-Hopf bifurcation in the general Van der Pol-Duffing equation

被引:3
作者
Candido, Murilo R. [1 ]
Valls, Claudia [2 ]
机构
[1] Univ Estadual Campinas, Dept Matemat, Rua Sergio Baruque de Holanda 651, BR-13083859 Campinas, SP, Brazil
[2] Univ Lisbon, Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
基金
巴西圣保罗研究基金会;
关键词
Invariant tori; Periodic solutions; Averaging method; PERIODIC-SOLUTIONS; SINGULARITIES;
D O I
10.1016/j.geomphys.2022.104609
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study the invariant sets which emerge from the zero-Hopf bifurcations that general Van der Pol-Duffing equations can exhibit. We provide sufficient conditions for the simultaneous bifurcation of three periodic solutions and two invariant torus from the origin of this system. We use recent results related to the averaging method in order to analytically obtain our results. We also provide numerical examples for all the analytical results that we provide. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 12 条
[1]   Hopf-Zero singularities truly unfold chaos [J].
Baldoma, I ;
Ibanez, S. ;
Seara, T. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 84
[2]   On the torus bifurcation in averaging theory [J].
Candido, Murilo R. ;
Novaes, Douglas D. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (08) :4555-4576
[3]   Persistence of periodic solutions for higher order perturbed differential systems via Lyapunov-Schmidt reduction [J].
Candido, Murilo R. ;
Llibre, Jaume ;
Novaes, Douglas D. .
NONLINEARITY, 2017, 30 (09) :3560-3586
[4]   Center problem and v-cyclicity of polynomial zero-Hopf singularities with non-singular rotation axis [J].
Garcia, Isaac A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 295 :113-137
[5]   Integrable zero-Hopf singularities and three-dimensional centres [J].
Garcia, Isaac A. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (02) :327-340
[6]  
Guckenheimer J., 1984, J APPL MECH, V51, P947, DOI DOI 10.1115/1.3167759
[7]  
Guckenheimer J, 1981, Lecture notes in math., V898, P99
[8]   Higher order averaging theory for finding periodic solutions via Brouwer degree [J].
Llibre, Jaume ;
Novaes, Douglas D. ;
Teixeira, Marco A. .
NONLINEARITY, 2014, 27 (03) :563-583
[9]  
Maoan H., 1998, J SYST SCI MATH SCI, V4
[10]   Bifurcations, chaos and synchronization in ADVP circuit with parallel resistor [J].
Matouk, A. E. ;
Agiza, H. N. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) :259-269