Discrete-time quantum walks as fermions of lattice gauge theory

被引:12
|
作者
Arnault, Pablo [1 ,2 ,3 ]
Perez, Armando [1 ,2 ,3 ]
Arrighi, Pablo [4 ,5 ]
Farrelly, Terry [6 ]
机构
[1] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain
[2] Univ Valencia, IFIC, Dr Moliner 50, E-46100 Burjassot, Spain
[3] CSIC, Dr Moliner 50, E-46100 Burjassot, Spain
[4] Univ Toulon & Var, Aix Marseille Univ, CNRS, LIS, Marseille, France
[5] IXXI, Lyon, France
[6] Leibniz Univ Hannover, Inst Theoret Phys, Appelstr 2, D-30167 Hannover, Germany
关键词
COMPUTATION; DYNAMICS; SPIN;
D O I
10.1103/PhysRevA.99.032110
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is shown that discrete-time quantum walks can be used to digitize, i.e., to time discretize fermionic models of continuous-time lattice gauge theory. The resulting discrete-time dynamics is thus not only manifestly unitary, but also ultralocal, i.e., the particle's speed is upper bounded, as in standard relativistic quantum field theories. The lattice chiral symmetry of staggered fermions, which corresponds to a translational invariance, is lost after the requirement of ultralocality of the evolution; this fact is an instance of Meyer's 1996 no-go results stating that no nontrivial scalar quantum cellular automaton can be translationally invariant [D. A. Meyer, J. Stat. Phys. 85, 551 (1996); Phys. Lett. A 223, 337 (1996)]. All results are presented in a single-particle framework and for a (1+1)-dimensional space-time.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Anderson localization in generalized discrete-time quantum walks
    Vakulchyk, I.
    Fistul, M. V.
    Qin, P.
    Flach, S.
    PHYSICAL REVIEW B, 2017, 96 (14)
  • [32] Partition-based discrete-time quantum walks
    Konno, Norio
    Portugal, Renato
    Sato, Iwao
    Segawa, Etsuo
    QUANTUM INFORMATION PROCESSING, 2018, 17 (04)
  • [33] Discrete-time quantum walks: Continuous limit and symmetries
    di Molfetta, G.
    Debbasch, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)
  • [34] A Study of Wigner Functions for Discrete-Time Quantum Walks
    Hinarejos, M.
    Banuls, M. C.
    Perez, A.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (07) : 1626 - 1633
  • [35] Emergent nonlinear phenomena in discrete-time quantum walks
    Mendonca, J. P.
    de Moura, F. A. B. F.
    Lyra, M. L.
    Almeida, G. M. A.
    PHYSICAL REVIEW A, 2020, 101 (06)
  • [36] Skeleton structure inherent in discrete-time quantum walks
    Yamagami, Tomoki
    Segawa, Etsuo
    Tanaka, Ken'ichiro
    Mihana, Takatomo
    Rohm, Andre
    Horisaki, Ryoichi
    Naruse, Makoto
    PHYSICAL REVIEW A, 2023, 107 (01)
  • [37] The average search probabilities of discrete-time quantum walks
    Hanmeng Zhan
    Quantum Information Processing, 21
  • [38] Partition-based discrete-time quantum walks
    Norio Konno
    Renato Portugal
    Iwao Sato
    Etsuo Segawa
    Quantum Information Processing, 2018, 17
  • [39] Spectral magnetization ratchets with discrete-time quantum walks
    Mallick, A.
    Fistul, M., V
    Kaczynska, P.
    Flach, S.
    PHYSICAL REVIEW A, 2020, 101 (03)
  • [40] Local probability conservation in discrete-time quantum walks
    Mister, Samuel T.
    Arayathel, Benjamin J.
    Short, Anthony J.
    PHYSICAL REVIEW A, 2021, 103 (04)