Discrete-time quantum walks as fermions of lattice gauge theory

被引:12
|
作者
Arnault, Pablo [1 ,2 ,3 ]
Perez, Armando [1 ,2 ,3 ]
Arrighi, Pablo [4 ,5 ]
Farrelly, Terry [6 ]
机构
[1] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain
[2] Univ Valencia, IFIC, Dr Moliner 50, E-46100 Burjassot, Spain
[3] CSIC, Dr Moliner 50, E-46100 Burjassot, Spain
[4] Univ Toulon & Var, Aix Marseille Univ, CNRS, LIS, Marseille, France
[5] IXXI, Lyon, France
[6] Leibniz Univ Hannover, Inst Theoret Phys, Appelstr 2, D-30167 Hannover, Germany
关键词
COMPUTATION; DYNAMICS; SPIN;
D O I
10.1103/PhysRevA.99.032110
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is shown that discrete-time quantum walks can be used to digitize, i.e., to time discretize fermionic models of continuous-time lattice gauge theory. The resulting discrete-time dynamics is thus not only manifestly unitary, but also ultralocal, i.e., the particle's speed is upper bounded, as in standard relativistic quantum field theories. The lattice chiral symmetry of staggered fermions, which corresponds to a translational invariance, is lost after the requirement of ultralocality of the evolution; this fact is an instance of Meyer's 1996 no-go results stating that no nontrivial scalar quantum cellular automaton can be translationally invariant [D. A. Meyer, J. Stat. Phys. 85, 551 (1996); Phys. Lett. A 223, 337 (1996)]. All results are presented in a single-particle framework and for a (1+1)-dimensional space-time.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks
    Marquez-Martin, Ivan
    Arnault, Pablo
    Di Molfetta, Giuseppe
    Perez, Armando
    PHYSICAL REVIEW A, 2018, 98 (03)
  • [2] Scattering theory and discrete-time quantum walks
    Feldman, E
    Hillery, M
    PHYSICS LETTERS A, 2004, 324 (04) : 277 - 281
  • [3] Discrete-time quantum walks in random artificial gauge fields
    Di Molfetta G.
    Debbasch F.
    Quantum Studies: Mathematics and Foundations, 2016, 3 (4) : 293 - 311
  • [4] On the use of discrete-time quantum walks in decision theory
    Chen, Ming
    Ferro, Giuseppe M.
    Sornette, Didier
    PLOS ONE, 2022, 17 (08):
  • [5] Scattering theory of topological phases in discrete-time quantum walks
    Tarasinski, B.
    Asboth, J. K.
    Dahlhaus, J. P.
    PHYSICAL REVIEW A, 2014, 89 (04):
  • [6] Multiparameter quantum metrology with discrete-time quantum walks
    Annabestani, Mostafa
    Hassani, Majid
    Tamascelli, Dario
    Paris, Matteo G. A.
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [7] Borromean states in discrete-time quantum walks
    Markiewicz, Marcin
    Karczewski, Marcin
    Kurzynski, Pawel
    QUANTUM, 2021, 5
  • [9] Photonic Discrete-time Quantum Walks and Applications
    Neves, Leonardo
    Puentes, Graciana
    ENTROPY, 2018, 20 (10):
  • [10] ENTANGLEMENT FOR DISCRETE-TIME QUANTUM WALKS ON THE LINE
    Ide, Yusuke
    Konno, Norio
    Machida, Takuya
    QUANTUM INFORMATION & COMPUTATION, 2011, 11 (9-10) : 855 - 866