Discrete-time quantum walks as fermions of lattice gauge theory

被引:12
作者
Arnault, Pablo [1 ,2 ,3 ]
Perez, Armando [1 ,2 ,3 ]
Arrighi, Pablo [4 ,5 ]
Farrelly, Terry [6 ]
机构
[1] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain
[2] Univ Valencia, IFIC, Dr Moliner 50, E-46100 Burjassot, Spain
[3] CSIC, Dr Moliner 50, E-46100 Burjassot, Spain
[4] Univ Toulon & Var, Aix Marseille Univ, CNRS, LIS, Marseille, France
[5] IXXI, Lyon, France
[6] Leibniz Univ Hannover, Inst Theoret Phys, Appelstr 2, D-30167 Hannover, Germany
关键词
COMPUTATION; DYNAMICS; SPIN;
D O I
10.1103/PhysRevA.99.032110
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is shown that discrete-time quantum walks can be used to digitize, i.e., to time discretize fermionic models of continuous-time lattice gauge theory. The resulting discrete-time dynamics is thus not only manifestly unitary, but also ultralocal, i.e., the particle's speed is upper bounded, as in standard relativistic quantum field theories. The lattice chiral symmetry of staggered fermions, which corresponds to a translational invariance, is lost after the requirement of ultralocality of the evolution; this fact is an instance of Meyer's 1996 no-go results stating that no nontrivial scalar quantum cellular automaton can be translationally invariant [D. A. Meyer, J. Stat. Phys. 85, 551 (1996); Phys. Lett. A 223, 337 (1996)]. All results are presented in a single-particle framework and for a (1+1)-dimensional space-time.
引用
收藏
页数:16
相关论文
共 59 条
  • [1] [Anonymous], P 45 ANN IEEE S FDN
  • [2] Quantum walks and gravitational waves
    Arnault, Pablo
    Debbasch, Fabrice
    [J]. ANNALS OF PHYSICS, 2017, 383 : 645 - 661
  • [3] Quantum walks and non-Abelian discrete gauge theory
    Arnault, Pablo
    Di Molfetta, Giuseppe
    Brachet, Marc
    Debbasch, Fabrice
    [J]. PHYSICAL REVIEW A, 2016, 94 (01)
  • [4] Quantum walks and discrete gauge theories
    Arnault, Pablo
    Debbasch, Fabrice
    [J]. PHYSICAL REVIEW A, 2016, 93 (05)
  • [5] Quantum walking in curved spacetime: discrete metric
    Arrighi, Pablo
    Di Molfetta, Giuseppe
    Facchini, Stefano
    [J]. QUANTUM, 2018, 2
  • [6] Arrighi P, 2017, QUANTUM INF COMPUT, V17, P810
  • [7] The Dirac equation as a quantum walk: higher dimensions, observational convergence
    Arrighi, Pablo
    Nesme, Vincent
    Forets, Marcelo
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (46)
  • [8] Discrete Lorentz covariance for quantum walks and quantum cellular automata
    Arrighi, Pablo
    Facchini, Stefano
    Forets, Marcelo
    [J]. NEW JOURNAL OF PHYSICS, 2014, 16
  • [9] Intrinsically universal n-dimensional quantum cellular automata
    Arrighi, Pablo
    Grattage, Jonathan
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2012, 78 (06) : 1883 - 1898
  • [10] Banuls M. C., ARXIV181012838