Bounded error schemes for the wave equation on complex domains

被引:10
作者
Abarbanel, S [1 ]
Ditkowski, A [1 ]
Yefet, A [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, Dept Appl Math, IL-69978 Tel Aviv, Israel
基金
美国国家航空航天局;
关键词
finite difference; embedded methods; wave equation; FDTD;
D O I
10.1007/s10915-004-4800-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the application of the method of boundary penalty terms (SAT) to the numerical solution of the wave equation on complex shapes with Dirichlet boundary conditions. A theory is developed, in a semi-discrete setting, that allows the use of a Cartesian grid on complex geometries, yet maintains the order of accuracy with only a linear temporal error-bound. A numerical example, involving the solution of Maxwell's equations inside a 2-D circular wave-guide demonstrates the efficacy of this method in comparison to others (e.g., the staggered Yee scheme)-we achieve a decrease of two orders of magnitude in the level of the L-2-error.
引用
收藏
页码:67 / 81
页数:15
相关论文
共 8 条
[1]  
ABARBANEL S, 1996, 968 ICASE
[2]  
ABARBANEL S, IN PRESS COMPUT FLUI
[3]  
ABARBANEL S, 1997, J COMPUT PHYS, V133
[4]  
DITKOWSKI A, 1997, THESIS TEL AVIV U TE
[5]  
TAFLOVE A, 1995, COMPUTATIONAL ELECTR, P51
[6]   On the construction of a high order difference scheme for complex domains in a Cartesian grid [J].
Turkel, E ;
Yefet, A .
APPLIED NUMERICAL MATHEMATICS, 2000, 33 (1-4) :113-124
[7]  
TURKEL E, 2000, IEEE T ANTENN PROPAG, V33, P125
[8]  
YEE KS, 1966, IEEE T ANTENN PROPAG, VAP14, P302