Effect of ionic strength on barium transport in porous media

被引:7
|
作者
Ye, Zi [1 ]
Prigiobbe, Valentina [1 ]
机构
[1] Stevens Inst Technol, Dept Civil Environm & Ocean Engn, Castle Point Hudson, Hoboken, NJ 07030 USA
基金
美国国家科学基金会;
关键词
Barium; Brine; Fracking; Hydraulic fracturing; Salinity; Transport in porous media; OXIDE-WATER INTERFACE; SURFACE-IONIZATION; UNCONVENTIONAL OIL; FLOWBACK WATER; ADSORPTION; COMPLEXATION; RADIUM; PREDICTION; DISPOSAL; SEAWATER;
D O I
10.1016/j.jconhyd.2018.01.003
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hydraulic fracturing (or fracking) is a well stimulation technique used to extract resources from a low permeability formation. Currently, the most common application of fracking is for the extraction of oil and gas from shale. During the operation, a large volume of brine, rich in hazardous chemicals, is produced. Spills of brine from wells or pits might negatively impact underground water resources and, in particular, one of the major concerns is the migration of radionuclides, such as radium (Ra2+), into the shallow subsurface. However, the transport behaviour of Ra2+ through a reactive porous medium under conditions typical of a brine, i.e., high salinity, is not well understood, yet. Here, a study on the transport behaviour of barium (Ba2+, congener of radium) through a porous medium containing a common mineral such as goethite (FeO(OH)) is presented. Batch and column flood tests were carried out at conditions resembling the produced brine, i.e., large values of ionic strength (I), namely, 1 to 3 mol/kg. The measurements were described with the triple layer surface complexation model coupled with the Pitzer activity coefficient method and a reactive transport model, in the case of the transport tests. The experimental results show that the adsorption of Ba2+ onto FeO(OH) increases with pH but decreases with / and it becomes negligible at the brine conditions. Moreover, even if isotherms show adsorption at large I, at the same conditions during transport, Ba2+ travels without retardation through the FeO(OH) porous medium. The triple layer model agrees very well with all batch data but it does not describe well the transport tests in all cases. In particular, the model cannot match the pH measurements at large I values. This suggests that the chemical reactions at the solid-liquid interface do not capture the mechanism of Ba2+ adsorption onto FeO (OH) at large salinity. Finally, this study suggests that barium, and potentially its congeners, namely, radium, calcium, magnesium, and strontium, may travel at the average flow velocity through a soil where the dominant reactive mineral is goethite.
引用
收藏
页码:24 / 32
页数:9
相关论文
共 50 条
  • [1] Transport and retention of colloidal particles in partially saturated porous media: Effect of ionic strength
    Zevi, Yuniati
    Dathe, Annette
    Gao, Bin
    Zhang, Wei
    Richards, Brian K.
    Steenhuis, Tammo S.
    WATER RESOURCES RESEARCH, 2009, 45
  • [2] Transport and retention of colloidal particles in partially saturated porous media: Effect of ionic strength
    Department of Biological and Environmental Engineering, Cornell University, Riley-Robb Hall, Ithaca, NY 14853-5701, United States
    不详
    Water Resour. Res., 2009, 12
  • [3] Transport and retention of colloidal particles in partially saturated porous media: Effect of ionic strength
    Zevi, Yuniati
    Dathe, Annette
    Gao, Bin
    Zhang, Wei
    Richards, Brian K.
    Steenhuis, Tammo S.
    Water Resources Research, 2009, 45 (12)
  • [4] Transport and retention of biochar particles in porous media: effect of pH, ionic strength, and particle size
    Zhang, Wei
    Niu, Jianzhi
    Morales, Veronica L.
    Chen, Xincai
    Hay, Anthony G.
    Lehmann, Johannes
    Steenhuis, Tammo S.
    ECOHYDROLOGY, 2010, 3 (04) : 497 - 508
  • [5] The effect of pH and ionic strength on the transport of alumina nanofluids in water-saturated porous media
    Zareei, Maliheh
    Yoozbashizadeh, Hossein
    Hosseini, Hamid Reza Madaah
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 137 (04) : 1169 - 1179
  • [6] Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media
    Chen, Hao
    Gao, Bin
    Li, Hui
    Ma, Lena Q.
    JOURNAL OF CONTAMINANT HYDROLOGY, 2011, 126 (1-2) : 29 - 36
  • [7] Effects of ionic strength and particle size on transport of microplastic and humic acid in porous media
    Zhao, Weigao
    Su, Zhan
    Geng, Tong
    Zhao, Yuwei
    Tian, Yimei
    Zhao, Peng
    CHEMOSPHERE, 2022, 309
  • [8] Transport of natural soil nanoparticles in saturated porous media: effects of pH and ionic strength
    Jiang, Yanji
    Yu, Lin
    Sun, Huimin
    Yin, Xianqiang
    Wang, Changzhao
    Mathews, Shiny
    Wang, Nong
    CHEMICAL SPECIATION AND BIOAVAILABILITY, 2017, 29 (01): : 186 - 196
  • [9] Transport of Ferrihydrite Nanoparticles in Saturated Porous Media: Role of Ionic Strength and Flow Rate
    Tosco, Tiziana
    Bosch, Julian
    Meckenstock, Rainer U.
    Sethi, Rajandrea
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (07) : 4008 - 4015
  • [10] The effects of starvation on the transport of Escherichia coli in saturated porous media are dependent on pH and ionic strength
    Walczak, Jacob J.
    Wang, Lixia
    Bardy, Sonia L.
    Feriancikova, Lucia
    Li, Jin
    Xu, Shangping
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2012, 90 : 129 - 136