Junction layer analysis in one-dimensional steady-state Euler-Poisson equations

被引:1
作者
Peng, Yue-Jun [1 ]
Yang, Yong-Fu [2 ,3 ]
机构
[1] Univ Clermont Ferrand 2, CNRS, UMR 6620, Math Lab, F-63177 Aubiere, France
[2] Hohai Univ, Coll Sci, Dept Math, Jiangsu 210098, Peoples R China
[3] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
quasi-neutral limit; junction layers; Euler-Poisson system; asymptotic analysis; semiconductors;
D O I
10.1016/j.jmaa.2008.02.062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the quasi-neutral limit in one-dimensional steady-state Euler-Poisson equations with junction layers. Typically, the junction layer phenomenon occurs in a ballistic diode of a semiconductor device where the doping profile is a discontinuous function. We derive the junction layer equations and prove the existence of their solutions which decay exponentially. Finally, we justify the quasi-neutral limit with junction layers by giving uniform error estimates. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:440 / 448
页数:9
相关论文
共 24 条
  • [21] A virtual element method for the steady-state Poisson-Nernst-Planck equations on polygonal meshes
    Liu, Yang
    Shu, Shi
    Wei, Huayi
    Yang, Ying
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 102 : 95 - 112
  • [22] Hysteresis and linear stability analysis on multiple steady-state solutions to the Poisson-Nernst-Planck equations with steric interactions
    Ding, Jie
    Sun, Hui
    Zhou, Shenggao
    PHYSICAL REVIEW E, 2020, 102 (05)
  • [23] Local averaging type a posteriori error estimates for the nonlinear steady-state Poisson-Nernst-Planck equations
    Yang, Ying
    Shen, Ruigang
    Fang, Mingjuan
    Shu, Shi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 404
  • [24] Numerical modeling based on the analytical solution of the steady-state small signal photocarrier grating equations and analysis of field-dependent measurements for noncrystalline Si: H samples
    Badran, R. I.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2024, 38 (11):