Gadolinium Aluminate Garnet (Gd3Al5O12): Crystal Structure Stabilization via Lutetium Doping and Properties of the (Gd1-xLux)3Al5O12 Solid Solutions (x=0-0.5)

被引:72
作者
Li, Jinkai [1 ]
Li, Ji-Guang [1 ,2 ]
Zhang, Zhongjie [1 ]
Wu, Xiaoli [1 ]
Liu, Shaohong [1 ]
Li, Xiaodong [1 ]
Sun, Xudong [1 ]
Sakka, Yoshio [2 ]
机构
[1] Northeastern Univ, Sch Met & Mat, Key Lab Anisotropy & Texture Mat, Minist Educ, Shenyang 110004, Liaoning, Peoples R China
[2] Natl Inst Mat Sci, Adv Mat Proc Unit, Tsukuba, Ibaraki 3050044, Japan
基金
中国国家自然科学基金;
关键词
CERAMIC SCINTILLATORS; COLLOIDAL SPHERES; RAY-DETECTORS; YAG POWDERS; X-RAY; Y3AL5O12; PHASE; LASER; LUMINESCENCE; PARTICLES;
D O I
10.1111/j.1551-2916.2011.04991.x
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To suppress the thermal decomposition and stabilize the crystal structure of Gd3Al5O12 (GdAG) garnet, GdAG was doped with significantly smaller Lu3+ to form (Gd,Lu)AG solid solutions. The precursors for (Gd1-xLux)3AG (x = 00.5), with a general formula of (NH4)xLn3Al5(OH)y(CO3)z.nH2O (Ln = Gd and Lu), were synthesized via carbonate co-precipitation from the mixed solutions of aluminum, lutetium, and gadolinium nitrates using ammonium hydrogen carbonate as the precipitant. The results showed that 10 at.% of Lu3+ (x = 0.1) has been able to stabilize GdAG against its thermal decomposition to a mixture of GdAlO3 (GdAP) and Al2O3 phases at temperatures above 1300 degrees C and that Lu3+ doping effectively lowers the temperature for garnet crystallization. The precursors of x = 0.3 convert to pure LnAG at a low temperature of 1000 degrees C via the intermediates of Ln4Al2O9 (LnAM) and LnAP. The carbonate precursors are loosely agglomerated and the resultant LnAG powders show good dispersion and a fairly uniform particle morphology. The (Gd,Lu)AG solid solutions exhibit decreasing lattice parameters and increasing optical bandgaps along with more Lu3+ incorporation.
引用
收藏
页码:931 / 936
页数:6
相关论文
共 38 条
[1]   Segregation in yttrium aluminum garnet: I, experimental determination [J].
Brown, KR ;
Bonnell, DA .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1999, 82 (09) :2423-2430
[2]  
COCKAYNE B, 1985, J LESS-COMMON MET, V144, P119
[3]  
Corman GS, 1991, CERAM ENG SCI P, V12, P1745
[4]   Structure of complex of N-methylpiperidine betaine with p-hydroxybenzoic acid studied by X-ray, FT-IR and DFT methods [J].
Dega-Szafran, Z. ;
Dutkiewicz, G. ;
Kosturkiewicz, Z. ;
Szafran, M. .
JOURNAL OF MOLECULAR STRUCTURE, 2008, 875 (1-3) :346-353
[5]  
DEWITH G, 1984, MATER RES BULL, V19, P1669, DOI 10.1016/0025-5408(84)90245-9
[6]   Processing technology, laser, optical and thermal properties of ceramic laser gain materials [J].
Dubinskii, M ;
Merkle, LD ;
Goff, JR ;
Quarles, GJ ;
Castillo, VK ;
Schepler, KL ;
Zelmon, D ;
Guha, S ;
Gonzalez, LP ;
Rickey, MR ;
Lee, JJ ;
Hegde, SM ;
Dumm, JQ ;
Messing, GL ;
Lee, SH .
Laser Source and System Technology for Defense and Security, 2005, 5792 :1-9
[7]  
Gadsden JA., 1975, Infrared spectra of minerals and related inorganic compounds
[8]   LASER OSCILLATIONS IN ND-DOPED YTTRIUM ALUMINUM YTTRIUM GALLIUM + GADOLINIUM GARNETS ( CONTINUOUS OPERATION OF Y3A15O12 PULSED OPERATION OF Y3GA5O15 + GD3GA5O12 RM TEMP E ) [J].
GEUSIC, JE ;
MARCOS, HM ;
VANUITERT, LG .
APPLIED PHYSICS LETTERS, 1964, 4 (10) :182-&
[9]   Ceramic scintillators [J].
Greskovich, C ;
Duclos, S .
ANNUAL REVIEW OF MATERIALS SCIENCE, 1997, 27 :69-88
[10]  
GRESKOVICH CD, 1992, AM CERAM SOC BULL, V71, P1120