Non-toxigenic environmental Vibrio cholerae O1 strain from Haiti provides evidence of pre-pandemic cholera in Hispaniola

被引:23
作者
Azarian, Taj [1 ]
Ali, Afsar [1 ,2 ]
Johnson, Judith A. [1 ,3 ]
Jubair, Mohammad [1 ,2 ]
Cella, Eleonora [1 ,4 ,5 ]
Ciccozzi, Massimo [5 ,6 ]
Nolan, David J. [1 ,3 ]
Farmerie, William [7 ]
Rashid, Mohammad H. [1 ]
Sinha-Ray, Shrestha [1 ]
Alam, Meer T. [1 ,2 ]
Morris, J. Glenn, Jr. [1 ,8 ]
Salemi, Marco [1 ,3 ]
机构
[1] Univ Florida, Emerging Pathogens Inst, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Environm & Global Hlth, Coll Publ Hlth & Hlth Profess, Gainesville, FL USA
[3] Univ Florida, Dept Pathol Immunol & Lab Med, Gainesville, FL 32611 USA
[4] Ist Super Sanita, Dept Infect Parasit & Immunomediated Dis, Rome, Italy
[5] Sapienza Univ Rome, Dept Publ Hlth & Infect Dis, Rome, Italy
[6] Univ Hosp Campus Biomed, Rome, Italy
[7] Univ Florida, Interdisciplinary Ctr Biotechnol Res, Gainesville, FL USA
[8] Univ Florida, Coll Med, Dept Med, Gainesville, FL USA
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
SOFTWARE PACKAGE; DIVERSITY;
D O I
10.1038/srep36115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Vibrio cholerae is ubiquitous in aquatic environments, with environmental toxigenic V. cholerae O1 strains serving as a source for recurrent cholera epidemics and pandemic disease. However, a number of questions remain about long-term survival and evolution of V. cholerae strains within these aquatic environmental reservoirs. Through monitoring of the Haitian aquatic environment following the 2010 cholera epidemic, we isolated two novel non-toxigenic (ctxA/B-negative) Vibrio cholerae O1. These two isolates underwent whole-genome sequencing and were investigated through comparative genomics and Bayesian coalescent analysis. These isolates cluster in the evolutionary tree with strains responsible for clinical cholera, possessing genomic components of 6th and 7th pandemic lineages, and diverge from "modern" cholera strains around 1548 C.E. [95% HPD: 1532-1555]. Vibrio Pathogenicity Island (VPI)-1 was present; however, SXT/R391-family ICE and VPI-2 were absent. Rugose phenotype conversion and vibriophage resistance evidenced adaption for persistence in aquatic environments. The identification of V. cholerae O1 strains in the Haitian environment, which predate the first reported cholera pandemic in 1817, broadens our understanding of the history of pandemics. It also raises the possibility that these and similar environmental strains could acquire virulence genes from the 2010 Haitian epidemic clone, including the cholera toxin producing CTX phi.
引用
收藏
页数:9
相关论文
共 35 条
  • [1] Monitoring Water Sources for Environmental Reservoirs of Toxigenic Vibrio cholerae O1, Haiti
    Alam, Meer T.
    Weppelmann, Thomas A.
    Weber, Chad D.
    Johnson, Judith A.
    Rashid, Mohammad H.
    Birch, Catherine S.
    Brumback, Babette A.
    de Rochars, Valery E. Madsen Beau
    Morris, J. Glenn, Jr.
    Ali, Afsar
    [J]. EMERGING INFECTIOUS DISEASES, 2014, 20 (03) : 356 - 363
  • [2] Phylodynamic Analysis of Clinical and Environmental Vibrio cholerae Isolates from Haiti Reveals Diversification Driven by Positive Selection
    Azarian, Taj
    Ali, Afsar
    Johnson, Judith A.
    Mohr, David
    Prosperi, Mattia
    Veras, Nazle M.
    Jubair, Mohammed
    Strickland, Samantha L.
    Rashid, Mohammad H.
    Alam, Meer T.
    Weppelmann, Thomas A.
    Katz, Lee S.
    Tarr, Cheryl L.
    Colwell, Rita R.
    Morris, Glenn, Jr.
    Salemi, Marco
    [J]. MBIO, 2014, 5 (06):
  • [3] Baron S., 2013, PLOS CURR, V5
  • [4] Virulence genes in environmental strains of Vibrio cholerae
    Chakraborty, S
    Mukhopadhyay, AK
    Bhadra, RK
    Ghosh, AN
    Mitra, R
    Shimada, T
    Yamasaki, S
    Faruque, SM
    Takeda, Y
    Colwell, RR
    Nair, GB
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (09) : 4022 - 4028
  • [5] Chin CS, 2013, NAT METHODS, V10, P563, DOI [10.1038/nmeth.2474, 10.1038/NMETH.2474]
  • [6] Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae
    Chun, Jongsik
    Grim, Christopher J.
    Hasan, Nur A.
    Lee, Je Hee
    Choi, Seon Young
    Haley, Bradd J.
    Taviani, Elisa
    Jeon, Yoon-Seong
    Kim, Dong Wook
    Lee, Jae-Hak
    Brettin, Thomas S.
    Bruce, David C.
    Challacombe, Jean F.
    Detter, J. Chris
    Han, Cliff S.
    Munk, A. Christine
    Chertkov, Olga
    Meincke, Linda
    Saunders, Elizabeth
    Walters, Ronald A.
    Huq, Anwar
    Nair, G. Balakrish
    Colwell, Rita R.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (36) : 15442 - 15447
  • [7] GET_HOMOLOGUES, a Versatile Software Package for Scalable and Robust Microbial Pangenome Analysis
    Contreras-Moreira, Bruno
    Vinuesa, Pablo
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (24) : 7696 - 7701
  • [8] Second-Pandemic Strain of Vibrio cholerae from the Philadelphia Cholera Outbreak of 1849
    Devault, Alison M.
    Golding, G. Brian
    Waglechner, Nicholas
    Enk, Jacob M.
    Kuch, Melanie
    Tien, Joseph H.
    Shi, Mang
    Fisman, David N.
    Dhody, Anna N.
    Forrest, Stephen
    Bos, Kirsten I.
    Earn, David J. D.
    Holmes, Edward C.
    Poinar, Hendrik N.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2014, 370 (04) : 334 - 340
  • [9] BEAST: Bayesian evolutionary analysis by sampling trees
    Drummond, Alexei J.
    Rambaut, Andrew
    [J]. BMC EVOLUTIONARY BIOLOGY, 2007, 7 (1)
  • [10] Faruque SM, 2012, VIRULENCE, V3, P556, DOI 10.4161/viru.22351