Symmetric solutions for a Neumann problem involving critical exponent

被引:4
作者
Cao, DM [1 ]
Noussair, ES
Yan, SS
机构
[1] Chinese Acad Sci, Inst Appl Math, Beijing 100080, Peoples R China
[2] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
[3] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
D O I
10.1017/S0308210500001268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct three types of symmetric peaked solutions for a Neumann problem involving critical Sobolev exponent: the interior peaked solution, the boundary peaked solution and the interior-boundary peaked solution.
引用
收藏
页码:1039 / 1064
页数:26
相关论文
共 35 条
[1]  
ADIMURTHI G, 1995, COMMUN PART DIFF EQ, V20, P591
[2]   ON A NONLINEAR ELLIPTIC EQUATION INVOLVING THE CRITICAL SOBOLEV EXPONENT - THE EFFECT OF THE TOPOLOGY OF THE DOMAIN [J].
BAHRI, A ;
CORON, JM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (03) :253-294
[3]  
Bahri A., 1989, PITMAN RES NOTES MAT, V182, pvi+I15+307
[4]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137
[5]  
Cao D., 2001, Adv. Differential Equations, V6, P931
[6]  
CAO D, IN PRESS PAC J MATH
[7]   On the existence of multipeaked solutions to a semilinear Neumann problem [J].
Cao, DM ;
Küpper, T .
DUKE MATHEMATICAL JOURNAL, 1999, 97 (02) :261-300
[8]  
Dancer EN, 1999, INDIANA U MATH J, V48, P1177
[9]   Multipeak solutions for a singularly perturbed Neumann problem [J].
Dancer, EN ;
Yan, SS .
PACIFIC JOURNAL OF MATHEMATICS, 1999, 189 (02) :241-262
[10]  
Dancer N., 1999, Topol. Methods Nonlinear Anal, V14, P1, DOI [10.12775/TMNA.1999.020, DOI 10.12775/TMNA.1999.020]