On the nonintegrability of the free surface hydrodynamics

被引:17
作者
Dyachenko, A. I. [1 ,2 ]
Kachulin, D. I. [2 ]
Zakharov, V. E. [1 ,2 ,3 ,4 ]
机构
[1] Novosibirsk State Univ, Novosibirsk 630090, Russia
[2] Russian Acad Sci, Landau Inst Theoret Phys, Chernogolovka 142432, Moscow Region, Russia
[3] Univ Arizona, Dept Math, Tucson, AZ USA
[4] Russian Acad Sci, Lebedev Phys Inst, Moscow 119991, Russia
基金
美国国家科学基金会; 俄罗斯基础研究基金会;
关键词
EQUATION; WAVES;
D O I
10.1134/S002136401314004X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The integrability of the compact 1D Zakharov equation has been analyzed. The numerical experiments show that the multiple collisions of breathers (which correspond to envelope solitons in the NLSE approximation) are not pure elastic. The amplitude of six-wave interactions for the compact 1D Zakharov equation has also been analyzed. It has been found that the six-wave amplitude is not canceled for this equation. Thus, the 1D Zakharov equation is not integrable.
引用
收藏
页码:43 / 47
页数:5
相关论文
共 6 条
[1]   A dynamic equation for water waves in one horizontal dimension [J].
Dyachenko, A. . ;
Zakharov, V. E. .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2012, 32 :17-21
[2]   IS FREE-SURFACE HYDRODYNAMICS AN INTEGRABLE SYSTEM [J].
DYACHENKO, AI ;
ZAKHAROV, VE .
PHYSICS LETTERS A, 1994, 190 (02) :144-148
[3]   5-WAVE INTERACTION ON THE SURFACE OF DEEP FLUID [J].
DYACHENKO, AI ;
LVOV, YV ;
ZAKHAROV, VE .
PHYSICA D, 1995, 87 (1-4) :233-261
[4]   Solitary wave interaction in a compact equation for deep-water gravity waves [J].
Fedele, F. ;
Dutykh, D. .
JETP LETTERS, 2012, 95 (12) :622-625
[5]  
Zakharov V.E., 1968, Prikl. Mekh. Tekh, V2, P190
[6]  
Zakharov V. E., 1991, INTEGRABILITY NONLIN