Bayesian nonparametric clustering as a community detection problem

被引:2
作者
Tonellato, Stefano F. [1 ]
机构
[1] Ca Foscari Univ Venice, Dept Econ, Cannaregio 873, I-30121 Venice, Italy
关键词
Dirichlet process priors; Mixture models; Community detection; Entropy; Clustering uncertainty; MONTE-CARLO METHODS; MIXTURE MODEL; DENSITY-ESTIMATION; SAMPLING METHODS; RANDOM-WALKS; CLASSIFICATION; SELECTION; NUMBER;
D O I
10.1016/j.csda.2020.107044
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A wide class of Bayesian nonparametric priors leads to the representation of the distribution of the observable variables as a mixture density with an infinite number of components. Such a representation induces a clustering structure in the data. However, due to label switching, cluster identification is not straightforward a posteriori and some post-processing of the MCMC output is usually required. Alternatively, observations can be mapped on a weighted undirected graph, where each node represents a sample item and edge weights are given by the posterior pairwise similarities. It is shown how, after building a particular random walk on such a graph, it is possible to apply a community detection algorithm, known as map equation, leading to the minimisation of the expected description length of the partition. A relevant feature of this method is that it allows for the quantification of the posterior uncertainty of the classification. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A New Bayesian Nonparametric Mixture Model
    Fuentes-Garcia, R.
    Mena, R. H.
    Walker, S. G.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (04) : 669 - 682
  • [32] Nonparametric multi-assignment clustering
    Liu, Chien-Liang
    Hsaio, Wen-Hoar
    Chang, Tao-Hsing
    Jou, Tzai-Min
    INTELLIGENT DATA ANALYSIS, 2017, 21 (04) : 893 - 911
  • [33] Bayesian Fourier clustering of gene expression data
    Kim, Jaehee
    Kyung, Minjung
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (08) : 6475 - 6494
  • [34] Robust Bayesian clustering
    Archambeau, Cedric
    Verleysen, Michel
    NEURAL NETWORKS, 2007, 20 (01) : 129 - 138
  • [35] Graphical Assistant Grouped Network Autoregression Model: A Bayesian Nonparametric Recourse
    Ren, Yimeng
    Zhu, Xuening
    Lu, Xiaoling
    Hu, Guanyu
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (01) : 49 - 63
  • [36] Bayesian Nonparametric Crowdsourcing
    Moreno, Pablo G.
    Artes-Rodriguez, Antonio
    Teh, Yee Whye
    Perez-Cruz, Fernando
    JOURNAL OF MACHINE LEARNING RESEARCH, 2015, 16 : 1607 - 1627
  • [37] The Computational Complexity of Hierarchical Clustering Algorithms for Community Detection: A Review
    Bui, Van Hieu
    Phan, Huyen Trang
    VIETNAM JOURNAL OF COMPUTER SCIENCE, 2023, 10 (04) : 409 - 431
  • [38] A multilevel clustering technique for community detection
    Inuwa-Dutse, Isa
    Liptrott, Mark
    Korkontzelos, Ioannis
    NEUROCOMPUTING, 2021, 441 : 64 - 78
  • [39] A Correlation Clustering Framework for Community Detection
    Veldt, Nate
    Gleich, David F.
    Wirth, Anthony
    WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), 2018, : 439 - 448
  • [40] Bayesian neural tree models for nonparametric regression
    Chakraborty, Tanujit
    Kamat, Gauri
    Chakraborty, Ashis Kumar
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2023, 65 (02) : 101 - 126