A new coupled KdV equation: Painleve test

被引:0
作者
Tong, B [1 ]
Jia, M
Lou, SY
机构
[1] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China
[2] Ningbo Univ, Dept Phys, Ningbo 315211, Peoples R China
关键词
coupled KdV equation; dispersion relations; integrability;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new type of coupled Korteweg de-Vries equation is found to be Painleve-integrable. The new model is a special case which can be used to describe two-layer fluids with different dispersion relations.
引用
收藏
页码:965 / 968
页数:4
相关论文
共 20 条
[1]   Stable and unstable vector dark solitons of coupled nonlinear Schrodinger equations: Application to two-component Bose-Einstein condensates [J].
Brazhnyi, VA ;
Konotop, VV .
PHYSICAL REVIEW E, 2005, 72 (02)
[2]   INVARIANT PAINLEVE ANALYSIS OF PARTIAL-DIFFERENTIAL EQUATIONS [J].
CONTE, R .
PHYSICS LETTERS A, 1989, 140 (7-8) :383-390
[3]   ON THE INTEGRABILITY OF A SYSTEM OF COUPLED KDV EQUATIONS [J].
DODD, R ;
FORDY, A .
PHYSICS LETTERS A, 1982, 89 (04) :168-170
[4]  
Drinfeld V.G., 1985, J SOVIET MATH, V30, P1975, DOI [DOI 10.1007/BF02105860, 10.1007/BF02105860]
[5]   On integrable coupled KdV-type systems [J].
Foursov, MV .
INVERSE PROBLEMS, 2000, 16 (01) :259-274
[6]   THE LIE-ALGEBRA STRUCTURE OF DEGENERATE HAMILTONIAN AND BI-HAMILTONIAN SYSTEMS [J].
FUCHSSTEINER, B .
PROGRESS OF THEORETICAL PHYSICS, 1982, 68 (04) :1082-1104
[7]  
GEAR JA, 1984, STUD APPL MATH, V70, P235
[8]   SOLITON-SOLUTIONS OF A COUPLED KORTEWEG-DEVRIES EQUATION [J].
HIROTA, R ;
SATSUMA, J .
PHYSICS LETTERS A, 1981, 85 (8-9) :407-408
[9]   New Darboux transformation for Hirota-Satsuma coupled KdV system [J].
Hu, HC ;
Liu, QP .
CHAOS SOLITONS & FRACTALS, 2003, 17 (05) :921-928
[10]   SYMMETRIES AND CONSERVATION-LAWS OF A COUPLED NON-LINEAR WAVE-EQUATION [J].
ITO, M .
PHYSICS LETTERS A, 1982, 91 (07) :335-338