A polynomial cycle canceling algorithm for submodular flows

被引:11
作者
Wallacher, C
Zimmerman, UT
机构
[1] SAP AG, D-69190 Walldorf, Germany
[2] TU Braunschweig, Abt Math Optimierung, D-38106 Braunschweig, Germany
关键词
submodular flow problem; cycle canceling method; polynomial algorithms;
D O I
10.1007/s101070050076
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Submodular flow problems, introduced by Edmonds and Giles [2], generalize network flow problems. Many algorithms for solving network flow problems have been generalized to submodular flow problems (cf. references in Fujishige [4]), e.g. the cycle canceling method of Klein [9]. For network flow problems, the choice of minimum-mean cycles in Goldberg and Tarjan [6], and the choice of minimum-ratio cycles in Wallacher [12] lead to polynomial cycle canceling methods. For submodular flow problems, Cui and Fujishige [1] show finiteness for the minimum-mean cycle method while Zimmermann [16] develops a pseudo-polynomial minimum ratio cycle method. Here, we prove pseudo-polynomiality of a larger class of the minimum-ratio variants and, by combining both methods, we develop a polynomial cycle canceling algorithm for submodular flow problems.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 16 条
[1]   A PRIMAL ALGORITHM FOR THE SUBMODULAR FLOW PROBLEM WITH MINIMUM-MEAN CYCLE SELECTION [J].
CUI, WT ;
FUJISHIGE, S .
JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 1988, 31 (03) :431-441
[2]  
Edmonds J, 1977, Annals of Discrete Mathematics, V1, P185
[3]   A STRONGLY POLYNOMIAL ALGORITHM FOR MINIMUM COST SUBMODULAR FLOW PROBLEMS [J].
FUJISHIGE, S ;
ROCK, H ;
ZIMMERMANN, U .
MATHEMATICS OF OPERATIONS RESEARCH, 1989, 14 (01) :60-69
[4]   ALGORITHMS FOR SOLVING INDEPENDENT-FLOW PROBLEMS [J].
FUJISHIGE, S .
JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 1978, 21 (02) :189-204
[5]  
FUJISHIGE S, 1991, ANN DISC MATH, V47
[6]   FINDING MINIMUM-COST CIRCULATIONS BY CANCELING NEGATIVE CYCLES [J].
GOLDBERG, AV ;
TARJAN, RE .
JOURNAL OF THE ACM, 1989, 36 (04) :873-886
[7]  
Grotschel M, 2012, Geometric algorithms and combinatorial optimization, V2
[8]  
KARP RM, 1978, DISCRETE MATH, V23, P309, DOI 10.1016/0012-365X(78)90011-0
[9]  
Klein M., 1967, MANAGE SCI, V14, P205, DOI [10.1287/mnsc.14.3.205, DOI 10.1287/MNSC.14.3.205]
[10]  
Megiddo N., 1979, Mathematics of Operations Research, V4, P414, DOI 10.1287/moor.4.4.414