Upper Bounds on the Paired Domination Subdivision Number of a Graph

被引:6
作者
Egawa, Yoshimi [1 ]
Furuya, Michitaka [1 ]
Takatou, Masanori [1 ]
机构
[1] Tokyo Univ Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, Japan
关键词
Paired domination number; Paired domination subdivision number; Tree;
D O I
10.1007/s00373-012-1162-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A paired dominating set of a graph G with no isolated vertex is a dominating set S of vertices such that the subgraph induced by S in G has a perfect matching. The paired domination number of G, denoted by gamma (pr)(G), is the minimum cardinality of a paired dominating set of G. The paired domination subdivision number is the minimum number of edges to be subdivided (each edge of G can be subdivided at most once) in order to increase the paired domination number. In this paper, we show that if G is a connected graph of order at least 4, then . We also characterize trees T such that sd gamma pr (T) >= vertical bar V(T)vertical bar/2.
引用
收藏
页码:843 / 856
页数:14
相关论文
共 9 条
[1]  
DIESTEL R., 2012, Grad. Texts in Math., V173
[2]   Paired-Domination Subdivision Numbers of Graphs [J].
Favaron, O. ;
Karami, H. ;
Sheikholeslami, S. M. .
GRAPHS AND COMBINATORICS, 2009, 25 (04) :503-512
[3]  
Haynes T. W., 2004, Discussiones Mathematicae Graph Theory, V24, P457, DOI 10.7151/dmgt.1244
[4]  
Haynes T. W., 2003, Journal of Combinatorial Mathematics and Combinatorial Computing, V44, P115
[5]  
Haynes T. W., 2001, Discuss. Math. Graph Theory, V21, P239
[6]  
Haynes T.W., 1995, C NUM, P65
[7]  
Haynes TW, 1998, NETWORKS, V32, P199, DOI 10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO
[8]  
2-F
[9]  
Velammal S., 1997, Ph.D. Thesis