(Co)homology of crossed modules

被引:40
作者
Carrasco, P [1 ]
Cegarra, AM
Grandjeán, AR
机构
[1] Univ Granada, Fac Ciencias, Dept Algebra, E-18071 Granada, Spain
[2] Univ Santiago, Fac Matemat, Dept Alxebra, Santiago, Spain
关键词
D O I
10.1016/S0022-4049(01)00094-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper begins with the observation that the category of crossed modules is tripleable over the category of sets, so that it is an algebraic category. This leads to a cotriple cohomology theory for crossed modules, whose basic study this work is mainly dedicated to. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:147 / 176
页数:30
相关论文
共 44 条
[1]  
Barr M, 1970, LECT NOTES MATH, V236
[2]  
BARR M, 1969, LECT NOTES MATH, V80, P245
[3]  
Barr M., 1985, Toposes, Triples and Theories
[4]  
BARR M, 1966, COCA, P336
[5]  
Baues H.-J., 1991, Combinatorial Homotopy and 4-Dimensional Complexes
[6]  
BECK J, 1967, THESIS COLUMBIA
[7]  
BREEN L, 1992, ANN SCI ECOLE NORM S, V25, P465
[8]   VANKAMPEN THEOREMS FOR DIAGRAMS OF SPACES [J].
BROWN, R ;
LODAY, JL .
TOPOLOGY, 1987, 26 (03) :311-335
[9]  
Brown R., 1999, HOMOL HOMOTOPY APPL, V1, P1, DOI [DOI 10.4310/HHA.1999.V1.N1.A1, 10.4310/HHA.1999.v1.n1.a1, 10.4310/HHA.1999.v1.n1.a1.165,171,173,221]
[10]  
Brown R., 1982, LONDON MATH SOC LECT, V48, P153