F-signature of pairs and the asymptotic behavior of Frobenius splittings

被引:24
作者
Blickle, Manuel [2 ]
Schwede, Karl [1 ]
Tucker, Kevin [3 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Johannes Gutenberg Univ Mainz, Inst Math, D-55099 Mainz, Germany
[3] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
F-signature; Cartier algebra; F-pure; F-regular; Splitting prime; F-splitting ratio; CHARACTERISTIC-P; TIGHT CLOSURE; COHEN-MACAULAY; REGULAR RINGS; LOCAL-RINGS; TEST IDEALS; PURE RINGS; PURITY; ELEMENTS; MAPS;
D O I
10.1016/j.aim.2012.09.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize F-signature to pairs (R, D) where D is a Cartier subalgebra on R as defined by the first two authors. In particular, we show the existence and positivity of the F-signature for any strongly F-regular pair. In one application, we answer an open question of Aberbach and Enescu by showing that the F-splitting ratio of an arbitrary F-pure local ring is strictly positive. Furthermore, we derive effective methods for computing the F-signature and the F-splitting ratio in the spirit of the work of R. Fedder. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:3232 / 3258
页数:27
相关论文
共 43 条
[1]   The structure of F-pure rings [J].
Aberbach, IM ;
Enescu, F .
MATHEMATISCHE ZEITSCHRIFT, 2005, 250 (04) :791-806
[2]  
Aberbach IM, 2003, MATH RES LETT, V10, P51
[3]   Extension of weakly and strongly F-regular rings by flat maps [J].
Aberbach, IM .
JOURNAL OF ALGEBRA, 2001, 241 (02) :799-807
[4]  
[Anonymous], PROGR COMMUTATIVE AL
[5]  
[Anonymous], 1993, Annals of Mathematics Studies, 131. The William H. Roever Lectures in Geometry
[6]  
[Anonymous], MACAULAY2 SOFTWARE S
[7]  
[Anonymous], 2006, London Math. Soc. Lecture Note Ser.
[8]  
[Anonymous], 1980, MATH LECT NOTE SERIE
[9]  
Blickle M., J ALGEBRAIC GEOM
[10]   Discreteness and rationality of F-jumping numbers on singular varieties [J].
Blickle, Manuel ;
Schwede, Karl ;
Takagi, Shunsuke ;
Zhang, Wenliang .
MATHEMATISCHE ANNALEN, 2010, 347 (04) :917-949