NONSEPARABLE DYNAMIC NEAREST NEIGHBOR GAUSSIAN PROCESS MODELS FOR LARGE SPATIO-TEMPORAL DATA WITH AN APPLICATION TO PARTICULATE MATTER ANALYSIS

被引:81
|
作者
Datta, Abhirup [1 ]
Banerjee, Sudipto [2 ]
Finley, Andrew O. [3 ,4 ]
Hamm, Nicholas A. S. [5 ]
Schaap, Martijn [6 ]
机构
[1] Johns Hopkins Univ, Dept Biostat, Baltimore, MD USA
[2] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA
[3] Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA
[4] Michigan State Univ, Dept Geog, E Lansing, MI 48824 USA
[5] Univ Twente, Fac Geoinformat Sci & Earth Observat ITC, NL-7500 AE Enschede, Netherlands
[6] TNO, Dept Climate Air & Sustainabil, NL-3508 TA Utrecht, Netherlands
来源
ANNALS OF APPLIED STATISTICS | 2016年 / 10卷 / 03期
基金
美国国家科学基金会;
关键词
Nonseparable spatio-temporal models; scalable Gaussian process; nearest neighbors; Bayesian inference; Markov chain Monte Carlo; environmental pollutants; AIR-POLLUTION; COVARIANCE FUNCTIONS; SPATIAL MODELS; LOTOS-EUROS; SPACE; QUALITY; IDENTIFICATION; INTERPOLATION; PREDICTION;
D O I
10.1214/16-AOAS931
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Particulate matter (PM) is a class of malicious environmental pollutants known to be detrimental to human health. Regulatory efforts aimed at curbing PM levels in different countries often require high resolution space-time maps that can identify red-flag regions exceeding statutory concentration limits. Continuous spatio-temporal Gaussian Process (GP) models can deliver maps depicting predicted PM levels and quantify predictive uncertainty. However, GP-based approaches are usually thwarted by computational challenges posed by large datasets. We construct a novel class of scalable Dynamic Nearest Neighbor Gaussian Process (DNNGP) models that can provide a sparse approximation to any spatio-temporal GP (e.g., with nonseparable covariance structures). The DNNGP we develop here can be used as a sparsity-inducing prior for spatio-temporal random effects in any Bayesian hierarchical model to deliver full posterior inference. Storage and memory requirements for a DNNGP model are linear in the size of the dataset, thereby delivering massive scalability without sacrificing inferential richness. Extensive numerical studies reveal that the DNNGP provides substantially superior approximations to the underlying process than low-rank approximations. Finally, we use the DNNGP to analyze a massive air quality dataset to substantially improve predictions of PM levels across Europe in conjunction with the LOTOS-EUROS chemistry transport models (CTMs).
引用
收藏
页码:1286 / 1316
页数:31
相关论文
共 29 条
  • [21] Spatio-temporal models to estimate daily concentrations of fine particulate matter in Montreal: Kriging with external drift and inverse distance-weighted approaches
    Ramos, Yuddy
    St-Onge, Benoit
    Blanchet, Jean-Pierre
    Smargiassi, Audrey
    JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY, 2016, 26 (04) : 405 - 414
  • [22] Spatio-temporal models to estimate daily concentrations of fine particulate matter in Montreal: Kriging with external drift and inverse distance-weighted approaches
    Yuddy Ramos
    Benoît St-Onge
    Jean-Pierre Blanchet
    Audrey Smargiassi
    Journal of Exposure Science & Environmental Epidemiology, 2016, 26 : 405 - 414
  • [23] LEST: Large language models and spatio-temporal data analysis for enhanced Sino-US exchange rate forecasting
    Han, Di
    Guo, Wei
    Chen, Han
    Wang, Bocheng
    Guo, Zikun
    INTERNATIONAL REVIEW OF ECONOMICS & FINANCE, 2024, 96
  • [24] Atmospheric particulate matter effects on SARS-CoV-2 infection and spreading dynamics: A spatio-temporal point process model
    Di Biagio, Katiuscia
    Baldini, Marco
    Dolcini, Jacopo
    Serafini, Pietro
    Sarti, Donatella
    Dorillo, Irene
    Ranzi, Andrea
    Settimo, Gaetano
    Bartolacci, Silvia
    Simeoni, Thomas Valerio
    Prospero, Emilia
    ENVIRONMENTAL RESEARCH, 2022, 212
  • [25] Spatio-Temporal Clustering Analysis for Air Pollution Particulate Matter (PM2.5) Using a Deep Learning Model
    Doreswamy
    Harishkumar, K. S.
    Gad, Ibrahim
    Yogesh, K. M.
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, AND INTELLIGENT SYSTEMS (ICCCIS), 2021, : 529 - 535
  • [26] MULTIVARIATE SPATIO-TEMPORAL MODELS FOR HIGH-DIMENSIONAL AREAL DATA WITH APPLICATION TO LONGITUDINAL EMPLOYER-HOUSEHOLD DYNAMICS
    Bradley, Jonathan R.
    Holan, Scott H.
    Wikle, Christopher K.
    ANNALS OF APPLIED STATISTICS, 2015, 9 (04): : 1761 - 1791
  • [27] Spatio-temporal variation and sensitivity analysis of aerosol particulate matter during the COVID-19 phase-wise lockdowns in Indian cities
    Ibrahim, Ahamed S. N.
    Shalini, S.
    Ramachandran, A.
    Palanivelu, K.
    JOURNAL OF ATMOSPHERIC CHEMISTRY, 2022, 79 (01) : 39 - 66
  • [29] Investigating fine-scale spatio-temporal predator-prey patterns in dynamic marine ecosystems: a functional data analysis approach
    Embling, Clare B.
    Illian, Janine
    Armstrong, Eric
    van der Kooij, Jeroen
    Sharples, Jonathan
    Camphuysen, Kees C. J.
    Scott, Beth E.
    JOURNAL OF APPLIED ECOLOGY, 2012, 49 (02) : 481 - 492