NONSEPARABLE DYNAMIC NEAREST NEIGHBOR GAUSSIAN PROCESS MODELS FOR LARGE SPATIO-TEMPORAL DATA WITH AN APPLICATION TO PARTICULATE MATTER ANALYSIS

被引:82
作者
Datta, Abhirup [1 ]
Banerjee, Sudipto [2 ]
Finley, Andrew O. [3 ,4 ]
Hamm, Nicholas A. S. [5 ]
Schaap, Martijn [6 ]
机构
[1] Johns Hopkins Univ, Dept Biostat, Baltimore, MD USA
[2] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA
[3] Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA
[4] Michigan State Univ, Dept Geog, E Lansing, MI 48824 USA
[5] Univ Twente, Fac Geoinformat Sci & Earth Observat ITC, NL-7500 AE Enschede, Netherlands
[6] TNO, Dept Climate Air & Sustainabil, NL-3508 TA Utrecht, Netherlands
基金
美国国家科学基金会;
关键词
Nonseparable spatio-temporal models; scalable Gaussian process; nearest neighbors; Bayesian inference; Markov chain Monte Carlo; environmental pollutants; AIR-POLLUTION; COVARIANCE FUNCTIONS; SPATIAL MODELS; LOTOS-EUROS; SPACE; QUALITY; IDENTIFICATION; INTERPOLATION; PREDICTION;
D O I
10.1214/16-AOAS931
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Particulate matter (PM) is a class of malicious environmental pollutants known to be detrimental to human health. Regulatory efforts aimed at curbing PM levels in different countries often require high resolution space-time maps that can identify red-flag regions exceeding statutory concentration limits. Continuous spatio-temporal Gaussian Process (GP) models can deliver maps depicting predicted PM levels and quantify predictive uncertainty. However, GP-based approaches are usually thwarted by computational challenges posed by large datasets. We construct a novel class of scalable Dynamic Nearest Neighbor Gaussian Process (DNNGP) models that can provide a sparse approximation to any spatio-temporal GP (e.g., with nonseparable covariance structures). The DNNGP we develop here can be used as a sparsity-inducing prior for spatio-temporal random effects in any Bayesian hierarchical model to deliver full posterior inference. Storage and memory requirements for a DNNGP model are linear in the size of the dataset, thereby delivering massive scalability without sacrificing inferential richness. Extensive numerical studies reveal that the DNNGP provides substantially superior approximations to the underlying process than low-rank approximations. Finally, we use the DNNGP to analyze a massive air quality dataset to substantially improve predictions of PM levels across Europe in conjunction with the LOTOS-EUROS chemistry transport models (CTMs).
引用
收藏
页码:1286 / 1316
页数:31
相关论文
共 76 条
[51]   The carcinogenicity of outdoor air pollution [J].
Loomis, Dana ;
Grosse, Yann ;
Lauby-Secretan, Beatrice ;
El Ghissassi, Fatiha ;
Bouvard, Veronique ;
Benbrahim-Tallaa, Lamia ;
Guha, Neela ;
Baan, Robert ;
Mattock, Heidi ;
Straif, Kurt .
LANCET ONCOLOGY, 2013, 14 (13) :1262-1263
[52]   Testing the capability of the chemistry transport model LOTOS-EUROS to forecast PM10 levels in the Netherlands [J].
Manders, A. M. M. ;
Schaap, M. ;
Hoogerbrugge, R. .
ATMOSPHERIC ENVIRONMENT, 2009, 43 (26) :4050-4059
[53]   Sensitivity of air pollution simulations with LOTOS-EUROS to the temporal distribution of anthropogenic emissions [J].
Mues, A. ;
Kuenen, J. ;
Hendriks, C. ;
Manders, A. ;
Segers, A. ;
Scholz, Y. ;
Hueglin, C. ;
Builtjes, P. ;
Schaap, M. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (02) :939-955
[54]   STATIONARITY AND INVERTIBILITY REGIONS FOR LOW ORDER STARMA MODELS [J].
PFEIFER, PE ;
DEUTSCH, SJ .
COMMUNICATIONS IN STATISTICS PART B-SIMULATION AND COMPUTATION, 1980, 9 (05) :551-562
[55]   INDEPENDENCE AND SPHERICITY TESTS FOR THE RESIDUALS OF SPACE-TIME ARMA MODELS [J].
PFEIFER, PE ;
DEUTSCH, SJ .
COMMUNICATIONS IN STATISTICS PART B-SIMULATION AND COMPUTATION, 1980, 9 (05) :533-549
[56]   Comparing emission inventories and model-ready emission datasets between Europe and North America for the AQMEII project [J].
Pouliot, George ;
Pierce, Thomas ;
van der Gon, Hugo Denier ;
Schaap, Martijn ;
Moran, Michael ;
Nopmongcol, Uarporn .
ATMOSPHERIC ENVIRONMENT, 2012, 53 :4-14
[57]   Exceptional emissions of NH3 and HCOOH in the 2010 Russian wildfires [J].
R'Honi, Y. ;
Clarisse, L. ;
Clerbaux, C. ;
Hurtmans, D. ;
Duflot, V. ;
Turquety, S. ;
Ngadi, Y. ;
Coheur, P. -F. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (08) :4171-4181
[58]  
Rasmussen CE, 2005, ADAPT COMPUT MACH LE, P1
[59]  
Sang HY, 2012, J ROY STAT SOC B, V74, P111, DOI 10.1111/j.1467-9868.2011.01007.x
[60]   The LOTOS-EUROS model: description, validation and latest developments [J].
Schaap, Martijn ;
Timmermans, Renske M. A. ;
Roemer, Michiel ;
Boersen, G. A. C. ;
Builtjes, Peter J. H. ;
Sauter, Ferd J. ;
Velders, Guus J. M. ;
Beck, Jeanette P. .
INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2008, 32 (02) :270-290