Synthesis and characterization of poly(arylene ether sulfone)-b-polybenzimidazole copolymers for high temperature low humidity proton exchange membrane fuel cells

被引:86
作者
Lee, Hae-Seung
Roy, Abhishek
Lane, Ozma
McGrath, James E. [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Chem, MII, Blacksburg, VA 24061 USA
关键词
Multiblock copolymer; Poly(arylene ether sulfone); Polybenzimidazole;
D O I
10.1016/j.polymer.2008.09.019
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Multiblock copolymers based on poly(arylene ether sulfone) and polybenzimidazole (PBI) with different block lengths were synthesized by coupling carboxyl functional aromatic poly(arylene ethers) with ortho diamino functional PBI oligomers in NMP, selectively doped with phosphoric acid, and evaluated as a high temperature proton exchange membrane (PEM). Transparent and ductile membranes were produced by solvent casting from DMAc. From dynamic mechanical analysis (DMA). the neat copolymer membranes showed two distinct glass transition temperatures which implies the existence of a nanostructured morphology in the membranes. These two nanophases became more distinct with increasing block length. The membranes were immersed in various concentrations of phosphoric acid solution to produce the proton conductivity. The doping level increased with increasing concentration of the acid solution and a maximum doping level of 12 was achieved when 14.6 M phosphoric acid Solution was used, The acid doped membranes showed significantly reduced swelling behavior compared to a control conventional phosphoric acid doped PBI homopolymer system which appears to be related to the selective sorption into the PBI phase. The ionic conductivity of the doped samples at 200 degrees C afforded up to 47 mS/cm without external humidification. The protonic conductivity was found to increase with block length at a given doping level, reflecting the sharpness of the nanophase separation and the effect was even more prominent at a low doping level of 6-7. It is suggested that the phosphoric acid doped multiblock copolymer system would be a strong candidate for high temperature and low relative humidity PEM applications such as those required for stationary power. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5387 / 5396
页数:10
相关论文
共 36 条
[1]   THE GROTTHUSS MECHANISM [J].
AGMON, N .
CHEMICAL PHYSICS LETTERS, 1995, 244 (5-6) :456-462
[2]   Ion conduction mechanisms and thermal properties of hydrated and anhydrous phosphoric acids studied with 1H, 2H, and 31P NMR [J].
Aihara, Yuichi ;
Sonai, Atsuo ;
Hattori, Mineyuki ;
Hayamizu, Kikuko .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (49) :24999-25006
[3]   Nafion® perfluorinated membranes in fuel cells [J].
Banerjee, S ;
Curtin, DE .
JOURNAL OF FLUORINE CHEMISTRY, 2004, 125 (08) :1211-1216
[4]  
COOPER KL, 1991, THESIS VIRGINIA POLY
[5]   Nafion® 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 °C [J].
Costamagna, P ;
Yang, C ;
Bocarsly, AB ;
Srinivasan, S .
ELECTROCHIMICA ACTA, 2002, 47 (07) :1023-1033
[6]  
de Grotthuss CJT., 1806, Ann Chim, V58, P54
[7]   New multiblock copolymers of sulfonated poly(4′-phenyl-2,5-benzophenone) and poly(arylene ether sulfone) for proton exchange membranes.: II [J].
Ghassemi, H ;
Ndip, G ;
McGrath, JE .
POLYMER, 2004, 45 (17) :5855-5862
[8]   Proton exchange membranes for fuel cell applications [J].
Hamrock, Steven J. ;
Yandrasits, Michael A. .
POLYMER REVIEWS, 2006, 46 (03) :219-244
[9]   Poly(arylene ether sulfone) copolymers and related systems from disulfonated monomer building blocks: Synthesis, characterization, and performance - A topical review [J].
Harrison, WL ;
Hickner, MA ;
Kim, YS ;
McGrath, JE .
FUEL CELLS, 2005, 5 (02) :201-212
[10]   Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors [J].
He, RH ;
Li, QF ;
Xiao, G ;
Bjerrum, NJ .
JOURNAL OF MEMBRANE SCIENCE, 2003, 226 (1-2) :169-184