An Optimal PID Control Algorithm for Training Feedforward Neural Networks

被引:67
作者
Jing, Xingjian [1 ]
Cheng, Li [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
关键词
Feedforward neural networks; linear matrix inequality (LMI); proportional integral and derivative (PID) controller; robust learning; LEARNING ALGORITHM;
D O I
10.1109/TIE.2012.2194973
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The training problem of feedforward neural networks (FNNs) is formulated into a proportional integral and derivative (PID) control problem of a linear discrete dynamic system in terms of the estimation error. The robust control approach greatly facilitates the analysis and design of robust learning algorithms for multiple-input-multiple-output (MIMO) FNNs using robust control methods. The drawbacks of some existing learning algorithms can therefore be revealed clearly, and an optimal robust PID-learning algorithm is developed. The optimal learning parameters can be found by utilizing linear matrix inequality optimization techniques. Theoretical analysis and examples including function approximation, system identification, exclusive-or (XOR) and encoder problems are provided to illustrate the results.
引用
收藏
页码:2273 / 2283
页数:11
相关论文
共 29 条
[1]   Type 2 Fuzzy Neural Structure for Identification and Control of Time-Varying Plants [J].
Abiyev, Rahib Hidayat ;
Kaynak, Okyay .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (12) :4147-4159
[2]   On adaptive learning rate that guarantees convergence in feedforward networks [J].
Behera, Laxmidhar ;
Kumar, Swagat ;
Patnaik, Awhan .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (05) :1116-1125
[3]   A fast training algorithm for neural networks [J].
Bilski, J ;
Rutkowski, L .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1998, 45 (06) :749-753
[4]   CONJUGATE-GRADIENT ALGORITHM FOR EFFICIENT TRAINING OF ARTIFICIAL NEURAL NETWORKS [J].
CHARALAMBOUS, C .
IEE PROCEEDINGS-G CIRCUITS DEVICES AND SYSTEMS, 1992, 139 (03) :301-310
[5]   PID-Like Neural Network Nonlinear Adaptive Control for Uncertain Multivariable Motion Control Systems [J].
Cong, S. ;
Liang, Y. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (10) :3872-3879
[6]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
[7]  
Ge S. S., 2013, Stable Adaptive Neural Network Control
[8]  
Hagan M. T., 1997, Neural network design
[9]   Adaptive control of a class of nonlinear systems with nonlinearly parameterized fuzzy approximators [J].
Han, H ;
Su, CY ;
Stepanenko, Y .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2001, 9 (02) :315-323
[10]  
Haykin S., 1999, Neural Networks: A Comprehensive Foundation, DOI DOI 10.1017/S0269888998214044