Global Weak Solutions for a Nonlinear Hyperbolic System

被引:3
作者
Sun, Qingyou [1 ]
Lu, Yunguang [1 ]
Klingenberg, Christian [2 ]
机构
[1] Hangzhou Normal Univ, KK Chen Inst Adv Studies, Hangzhou 311121, Peoples R China
[2] Wuerzburg Univ, Dept Math, D-97070 Wurzburg, Germany
关键词
global weak solutions; viscosity method; compensated compactness; LAX-FRIEDRICHS SCHEME; ISENTROPIC GAS-DYNAMICS; CONVERGENCE; EXISTENCE; VISCOSITY; STABILITY; MODEL;
D O I
10.1007/s10473-020-0502-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the global existence of weak solutions for the Cauchy problem of the nonlinear hyperbolic system of three equations (1.1) with bounded initial data (1.2). When we fix the third variables, the system about the variables rho anduis the classical isentropic gas dynamics in Eulerian coordinates with the pressure function P(rho,s)=e(s)e(-1 rho), which, in general, does not form a bounded invariant region. We introduce a variant of the viscosity argument, and construct the approximate solutions of (1.1) and (1.2) by adding the artificial viscosity to the Riemann invariants system (2.1). When the amplitude of the first two Riemann invariants (w(1)(x, 0),w(2)(x, 0)) of system (1.1) is small, (w(1)(x, 0),w(2)(x, 0)) are nondecreasing and the third Riemann invariants(x, 0) is of the bounded total variation, we obtained the necessary estimates and the pointwise convergence of the viscosity solutions by the compensated compactness theory. This is an extension of the results in [1].
引用
收藏
页码:1185 / 1194
页数:10
相关论文
共 17 条
[1]   CONVERGENCE OF THE LAX-FRIEDRICHS SCHEME FOR ISENTROPIC GAS-DYNAMICS .3. [J].
CHEN, GQ .
ACTA MATHEMATICA SCIENTIA, 1986, 6 (01) :75-120
[2]   CONVERGENCE OF THE LAX-FRIEDRICHS SCHEME FOR ISENTROPIC GAS-DYNAMICS .2. [J].
DING, XX ;
CHEN, GQ ;
LUO, PZ .
ACTA MATHEMATICA SCIENTIA, 1985, 5 (04) :433-472
[3]  
DING XX, 1985, ACTA MATH SCI, V5, P415, DOI 10.1016/S0252-9602(18)30542-3
[4]   CONVERGENCE OF THE VISCOSITY METHOD FOR ISENTROPIC GASDYNAMICS [J].
DIPERNA, RJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 91 (01) :1-30
[5]   L∞ SOLUTIONS FOR A MODEL OF NONISOTHERMAL POLYTROPIC GAS FLOW [J].
Frid, Hermano ;
Holden, Helge ;
Karlsen, Kenneth H. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (05) :2253-2274
[6]   MACROSCOPIC REGULARITY FOR THE BOLTZMANN EQUATION [J].
Huang, Feimin ;
Wang, Yong .
ACTA MATHEMATICA SCIENTIA, 2018, 38 (05) :1549-1566
[7]   THE STABILITY OF STATIONARY SOLUTION FOR OUTFLOW PROBLEM ON THE NAVIER-STOKES-POISSON SYSTEM [J].
Jiang, Mina ;
Lai, Suhua ;
Yin, Haiyan ;
Zhu, Changjiang .
ACTA MATHEMATICA SCIENTIA, 2016, 36 (04) :1098-1116
[8]   KINETIC FORMULATION OF THE ISENTROPIC GAS-DYNAMICS AND P-SYSTEMS [J].
LIONS, PL ;
PERTHAME, B ;
TADMOR, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 163 (02) :415-431
[9]  
Lions PL, 1996, COMMUN PUR APPL MATH, V49, P599, DOI 10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO
[10]  
2-5