Existence and Liouville theorems for V-harmonic maps from complete manifolds

被引:42
作者
Chen, Qun [2 ,3 ]
Jost, Juergen [1 ,2 ]
Qiu, Hongbing [3 ]
机构
[1] Univ Leipzig, Dept Math, D-04091 Leipzig, Germany
[2] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[3] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
欧洲研究理事会;
关键词
V-Harmonic map; Noncompact manifold; Existence; Liouville theorem; V-Laplacian comparison theorem; COMPLETE RIEMANNIAN-MANIFOLDS; EMERY-RICCI TENSOR; FINSLER MANIFOLDS; HEAT FLOWS; GEOMETRY;
D O I
10.1007/s10455-012-9327-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish existence and uniqueness theorems for V-harmonic maps from complete noncompact manifolds. This class of maps includes Hermitian harmonic maps, Weyl harmonic maps, affine harmonic maps, and Finsler harmonic maps from a Finsler manifold into a Riemannian manifold. We also obtain a Liouville type theorem for V-harmonic maps. In addition, we prove a V-Laplacian comparison theorem under the Bakry-Emery Ricci condition.
引用
收藏
页码:565 / 584
页数:20
相关论文
共 38 条
[1]  
[Anonymous], 1983, ELLIPTIC PARTIAL DIF
[2]  
Cao H.D., 2010, RECENT ADV GEOMETRIC, V11, P1
[3]   Finsler Laplacians and minimal-energy maps [J].
Centore, P .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (01) :1-13
[4]  
Chen Qun, 2011, PREPRINT
[5]  
Cheng S. Y., 1980, Proc. Symp. Pure Math, V36, P147
[6]   ON THE LIOUVILLE THEOREM FOR HARMONIC MAPS [J].
CHOI, HI .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 85 (01) :91-94
[7]   Generic mean curvature flow I; generic singularities [J].
Colding, Tobias H. ;
Minicozzi, William P., II .
ANNALS OF MATHEMATICS, 2012, 175 (02) :755-833
[8]  
Ding Q., 2011, ARXIV11011411V1
[9]  
Ding W. Y., 1991, INT J MATH, V2, P617
[10]  
Dong T., 2010, NONLINEAR ANAL, V72, P3457