Strongly clean rings and fitting's lemma

被引:246
作者
Nicholson, WK [1 ]
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
关键词
D O I
10.1080/00927879908826649
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ring is called strongly clean if every element is the sum of an idempotent and a unit which commute. These rings are shown to be a natural generalization of the strongly pi-regular rings, and several properties of strongly pi-regular rings are extended, including their relationship to Fitting's lemma.
引用
收藏
页码:3583 / 3592
页数:10
相关论文
共 12 条
[2]   INJECTIVE AND SUBJECTIVE ENDOMORPHISMS OF FINITELY GENERATED MODULES [J].
ARMENDARIZ, EP ;
FISHER, JW ;
SNIDER, RL .
COMMUNICATIONS IN ALGEBRA, 1978, 6 (07) :659-672
[3]  
Azumaya G., 1954, J FS HOKKAIDO U, V13, P34
[4]   ON STRONGLY PI-REGULAR RINGS AND HOMOMORPHISMS INTO THEM [J].
BURGESS, WD ;
MENAL, P .
COMMUNICATIONS IN ALGEBRA, 1988, 16 (08) :1701-1725
[5]   EXCHANGE RINGS, UNITS AND IDEMPOTENTS [J].
CAMILLO, VP ;
YU, HP .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (12) :4737-4749
[6]  
DISCHINGER F, 1976, CR ACAD SCI A MATH, V283, P571
[7]   FREE AND RESIDUALLY ARTINIAN REGULAR-RINGS [J].
GOODEARL, KR ;
MENAL, P ;
MONCASI, J .
JOURNAL OF ALGEBRA, 1993, 156 (02) :407-432
[8]   PERSPECTIVITY AND CANCELLATION IN REGULAR RINGS [J].
HANDELMAN, D .
JOURNAL OF ALGEBRA, 1977, 48 (01) :1-16
[9]   On exchange rings [J].
Nicholson, WK .
COMMUNICATIONS IN ALGEBRA, 1997, 25 (06) :1917-1918
[10]   LIFTING IDEMPOTENTS AND EXCHANGE RINGS [J].
NICHOLSON, WK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 229 (MAY) :269-278