CENTRAL UNITS IN METACYCLIC INTEGRAL GROUP RINGS

被引:9
作者
Ferraz, Raul Antonio [2 ]
Jacobo Simon-Pinero, Juan [1 ]
机构
[1] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
[2] Univ Sao Paulo, Inst Math & Stat, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Central units; Finite groups; Group rings; Metacyclic groups;
D O I
10.1080/00927870802158028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we give a method to compute the rank of the subgroup of central units of ZG, for a finite metacyclic group, G, by means of Q-classes and R-classes. Then we construct a multiplicatively independent set u subset of Z(U(ZC(p,q))) and by applying our results, we prove that u generates a subgroup of finite index.
引用
收藏
页码:3708 / 3722
页数:15
相关论文
共 14 条
[1]  
BERMAN SD, 1956, DOKL AKAD NAUK SSSR+, V106, P767
[2]  
Curtis C. W., 1962, Representation theory of finite groups and associative algebras, VXI
[3]  
Curtis C. W., 1988, METHODS REPRESENTATI
[4]   Simple components and central units in group algebras [J].
Ferraz, RA .
JOURNAL OF ALGEBRA, 2004, 279 (01) :191-203
[5]  
GROVE LC, 1973, SIMON STEVIN, V47, P45
[6]   Metacyclic groups [J].
Hempel, CE .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (08) :3865-3897
[7]   Central units of integral group rings of nilpotent groups [J].
Jespers, E ;
Parmenter, MM ;
Sehgal, SK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (04) :1007-1012
[8]  
KARPILOVSKY G, 1989, UNIT GROUPS GROUP RI
[9]  
Milies CP, 1999, COMMUN ALGEBRA, V27, P6233
[10]  
Polcino Milies C., 2003, INTRO GROUP RINGS