Automatic Lesion Incidence Estimation and Detection in Multiple Sclerosis Using Multisequence Longitudinal MRI

被引:57
作者
Sweeney, E. M. [1 ,2 ]
Shinohara, R. T. [1 ,2 ]
Shea, C. D. [2 ]
Reich, D. S. [1 ,2 ,3 ]
Crainiceanu, C. M. [1 ]
机构
[1] Johns Hopkins Univ, Dept Biostat, Baltimore, MD 21205 USA
[2] NINDS, Translat Neuroradiol Unit, Neuroimmunol Branch, NIH, Bethesda, MD 20892 USA
[3] NIH, Dept Diagnost Radiol, Ctr Clin, Bethesda, MD 20892 USA
关键词
SEGMENTATION; SUBTRACTION; IMAGES; MS;
D O I
10.3174/ajnr.A3172
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND AND PURPOSE: Detecting incidence and enlargement of lesions is essential in monitoring the progression of MS. In clinical trials, lesion load is observed by manually segmenting and comparing serial MR images, which is time consuming, costly, and prone to inter- and intraobserver variability. Subtracting images from consecutive time points nulls stable lesions, leaving only new lesion activity. We propose SuBLIME, an automated method for segmenting incident lesion voxels. MATERIALS AND METHODS: We used logistic regression models incorporating multiple MR imaging sequences and subtraction images from consecutive longitudinal studies to estimate voxel-level probabilities of lesion incidence. We used T1-weighted, T2-weighted, FLAIR, and PD volumes from a total of 110 MR imaging studies from 10 subjects. RESULTS: To assess the performance of the model, we assigned 5 subjects to a training set and the remaining 5 to a validation set. With SuBLIME, lesion incidence is detected and delineated in the validation set with an AUC of 99% (95% CI [97%, 100%]) at the voxel level. CONCLUSIONS: This fully automated and computationally fast method allows sensitive and specific detection of lesion incidence that can be applied to large collections of images. Using the explicit form of the statistical model, SuBLIME can easily be adapted to cases when more or fewer imaging sequences are available.
引用
收藏
页码:68 / 73
页数:6
相关论文
共 22 条
[1]  
Adler D, 2011, FF MEMORY EFFICIENT
[2]  
Bordier Ce., 2009, AnalyzeFMRI: An R Package to Perform Statistical Analysis on FMRI Datasets
[3]   Automatic change detection in multimodal serial MRI: application to multiple sclerosis lesion evolution [J].
Bosc, M ;
Heitz, F ;
Armspach, JP ;
Namer, I ;
Gounot, D ;
Rumbach, L .
NEUROIMAGE, 2003, 20 (02) :643-656
[4]   A joint registration and segmentation approach to skull stripping [J].
Carass, Aaron ;
Wheeler, M. Bryan ;
Cuzzocreo, Jennifer ;
Bazin, Pierre-Louis ;
Bassett, Susan S. ;
Prince, Jerry L. .
2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3, 2007, :656-+
[5]   Segmentation of subtraction images for the measurement of lesion change in multiple sclerosis [J].
Duan, Y. ;
Hildenbrand, P. G. ;
Sampat, M. P. ;
Tate, D. F. ;
Csapo, I. ;
Moraal, B. ;
Bakshi, R. ;
Barkhof, F. ;
Meier, D. S. ;
Guttmann, C. R. G. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2008, 29 (02) :340-346
[6]   MR Imaging of Multiple Sclerosis [J].
Filippi, Massimo ;
Rocca, Maria A. .
RADIOLOGY, 2011, 259 (03) :659-681
[7]   UNSUPERVISED TISSUE-TYPE SEGMENTATION OF 3D DUAL-ECHO MR HEAD DATA [J].
GERIG, G ;
MARTIN, J ;
KIKINIS, R ;
KUBLER, O ;
SHENTON, M ;
JOLESZ, FA .
IMAGE AND VISION COMPUTING, 1992, 10 (06) :349-360
[8]  
Lemieux L, 1998, Med Image Anal, V2, P227, DOI 10.1016/S1361-8415(98)80021-2
[9]  
Llado X, 2011, NEURORADIOLOGY
[10]   The Java']Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software [J].
Lucas, Blake C. ;
Bogovic, John A. ;
Carass, Aaron ;
Bazin, Pierre-Louis ;
Prince, Jerry L. ;
Pham, Dzung L. ;
Landman, Bennett A. .
NEUROINFORMATICS, 2010, 8 (01) :5-17