Confinement Catalyst of Co9S8@N-Doped Carbon Derived from Intercalated Co(OH)2 Precursor and Enhanced Electrocatalytic Oxygen Reduction Performance

被引:41
作者
Bai, Fan [1 ]
Qu, Xin [1 ]
Wang, Jun [1 ]
Chen, Xu [1 ]
Yang, Wensheng [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
confinement catalyst; interlayer carbonization; cobalt sulfide; surface oxidation; electrocatalytic oxygen reduction; DFT calculations; LAYERED DOUBLE HYDROXIDE; HIGHLY EFFICIENT; EVOLUTION REACTION; CO; GRAPHENE; SHELL; NANOPARTICLES; CO9S8; ARCHITECTURES; COMPOSITES;
D O I
10.1021/acsami.0c08267
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Oxygen reduction reaction (ORR) is an important cathode reaction in fuel cells and metal-air batteries. Composites of transition-metal sulfides (TMSs) and nitrogen-doped carbon (NC) are promising alternative ORR catalysts because of their high catalytic activity. However, the agglomeration of TMS particles limits practical applications. Here, a confinement catalyst composed of Co9S8@NC with a flower-like morphology was derived from metanilic intercalated Co(OH)(2) through interlayer-confined carbonation accompanied with host-layer sulfidation. The surface of the Co9S8 particles is covered with a few layers of nitrogen-doped graphene, which can prevent the Co9S8 particles from agglomeration and also produce catalytic activity affected by internal Co9S8. Thus, the Co9S8@NC material achieves excellent ORR performance with a half-wave potential of 0.861 V-RHE. In addition, an oxide layer on the surface of Co9S8@NC is fabricated shortly after the ORR starts. Further tests and density functional theory calculations indicated that this cobalt oxide layer can increase the electrochemically active area of Co9S8@NC as well as reduce the ORR energy barrier, thereby providing more catalytic active sites and enhancing the intrinsic catalytic activity, thus achieving a self-activation effect during the electrochemical reaction process.
引用
收藏
页码:33740 / 33750
页数:11
相关论文
共 65 条
[1]   Structurally Modulated Graphitic Carbon Nanofiber and Heteroatom (N,F) Engineering toward Metal-Free ORR Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells [J].
Akula, Srinu ;
Sahu, Akhila Kumar .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (10) :11438-11449
[2]   Noble metal supported hexagonal boron nitride for the oxygen reduction reaction: a DFT study [J].
Back, Seoin ;
Siahrostami, Samira .
NANOSCALE ADVANCES, 2019, 1 (01) :132-139
[3]   Vacancy in Ultrathin 2D Nanomaterials toward Sustainable Energy Application [J].
Bai, Fan ;
Xu, Liang ;
Zhai, Xiaoying ;
Chen, Xu ;
Yang, Wensheng .
ADVANCED ENERGY MATERIALS, 2020, 10 (11)
[4]   PtPb/PtNi Intermetallic Core/Atomic Layer Shell Octahedra for Efficient Oxygen Reduction Electrocatalysis [J].
Bu, Lingzheng ;
Shao, Qi ;
Bin, E. ;
Guo, Jun ;
Yao, Jianlin ;
Huang, Xiaoqing .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (28) :9576-9582
[5]   Ultrathin, Polycrystalline, Two-Dimensional Co3O4 for Low-Temperature CO Oxidation [J].
Cai, Yafeng ;
Xu, Jia ;
Guo, Yun ;
Liu, Jingyue .
ACS CATALYSIS, 2019, 9 (03) :2558-2567
[6]   Facile synthesis of Ni3S2 and Co9S8 double-size nanoparticles decorated on rGO for high-performance supercapacitor electrode materials [J].
Chang, Yuan ;
Sui, Yanwei ;
Qi, Jiqiu ;
Jiang, Liyang ;
He, Yezeng ;
Wei, Fuxiang ;
Meng, Qingkun ;
Jin, Yunxue .
ELECTROCHIMICA ACTA, 2017, 226 :69-78
[7]   Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis [J].
Chen, Pengzuo ;
Zhang, Nan ;
Wang, Sibo ;
Zhou, Tianpei ;
Tong, Yun ;
Ao, Chengcheng ;
Yan, Wensheng ;
Zhang, Lidong ;
Chu, Wangsheng ;
Wu, Changzheng ;
Xie, Yi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (14) :6635-6640
[8]   Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes [J].
Chen, Wei ;
Fan, Zhongli ;
Gu, Lin ;
Bao, Xinhe ;
Wang, Chunlei .
CHEMICAL COMMUNICATIONS, 2010, 46 (22) :3905-3907
[9]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570
[10]   A single-atom catalyst of cobalt supported on a defective two-dimensional boron nitride material as a promising electrocatalyst for the oxygen reduction reaction: a DFT study [J].
Deng, Chaofang ;
He, Rongxing ;
Shen, Wei ;
Li, Ming ;
Zhang, Tao .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (13) :6900-6907