Quantum variance and ergodicity for the baker's map

被引:15
作者
Esposti, MD
Nonnenmacher, S
Winn, B
机构
[1] Univ Bologna, Dipartmento Matemat, I-40127 Bologna, Italy
[2] CEA Saclay, DSM, PhT, Unite Rech,CNRS,Serv Phys Theor, F-91191 Gif Sur Yvette, France
关键词
D O I
10.1007/s00220-005-1397-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove an Egorov theorem, or quantum-classical correspondence, for the quantised baker's map, valid up to the Ehrenfest time. This yields a logarithmic upper bound for the decay of the quantum variance, and, as a corollary, a quantum ergodic theorem for this map.
引用
收藏
页码:325 / 352
页数:28
相关论文
共 58 条
[51]  
SCHUBERT R, 2005, UPPER BOUNDS RATE QU
[52]  
Schubert R., 2001, THESIS U ULM
[53]  
SNIRELMAN AI, 1974, USP MAT NAUK, V29, P181
[54]   A SEMICLASSICAL SUM-RULE FOR MATRIX-ELEMENTS OF CLASSICALLY CHAOTIC SYSTEMS [J].
WILKINSON, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (09) :2415-2423
[55]   Ergodicity of eigenfunctions for ergodic billiards [J].
Zelditch, S ;
Zworski, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 175 (03) :673-682
[56]   UNIFORM-DISTRIBUTION OF EIGENFUNCTIONS ON COMPACT HYPERBOLIC SURFACES [J].
ZELDITCH, S .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (04) :919-941
[57]   ON THE RATE OF QUANTUM ERGODICITY .1. UPPER-BOUNDS [J].
ZELDITCH, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 160 (01) :81-92
[58]  
[No title captured]