Quantum variance and ergodicity for the baker's map

被引:15
作者
Esposti, MD
Nonnenmacher, S
Winn, B
机构
[1] Univ Bologna, Dipartmento Matemat, I-40127 Bologna, Italy
[2] CEA Saclay, DSM, PhT, Unite Rech,CNRS,Serv Phys Theor, F-91191 Gif Sur Yvette, France
关键词
D O I
10.1007/s00220-005-1397-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove an Egorov theorem, or quantum-classical correspondence, for the quantised baker's map, valid up to the Ehrenfest time. This yields a logarithmic upper bound for the decay of the quantum variance, and, as a corollary, a quantum ergodic theorem for this map.
引用
收藏
页码:325 / 352
页数:28
相关论文
共 58 条
[1]   Quantum dynamical entropy and decoherence rate [J].
Alicki, R ;
Lozinski, A ;
Pakonski, P ;
Zyczkowski, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (19) :5157-5172
[2]  
Arnold V. I., 1967, PROBLEMES ERGODIQUES
[3]   Rate of quantum ergodicity in Euclidean billiards (vol 57, pg 5425, 1998) [J].
Backer, A ;
Schubert, R ;
Stifter, P .
PHYSICAL REVIEW E, 1998, 58 (04) :5192-5192
[4]   Rate of quantum ergodicity in Euclidean billiards [J].
Backer, A ;
Schubert, R ;
Stifter, P .
PHYSICAL REVIEW E, 1998, 57 (05) :5425-5447
[5]   THE QUANTIZED BAKERS TRANSFORMATION [J].
BALAZS, NL ;
VOROS, A .
ANNALS OF PHYSICS, 1989, 190 (01) :1-31
[6]  
Bambusi D, 1999, ASYMPTOTIC ANAL, V21, P149
[7]  
BARNETT A, 2004, UNPUB COMM PURE APPL
[8]  
Bonechi F, 2000, COMMUN MATH PHYS, V211, P659, DOI 10.1007/s002200050831
[9]  
Boulkhemair A, 1999, J FUNCT ANAL, V165, P173, DOI 10.1006/jfan:1999.3423
[10]  
Bouzouina A, 2002, DUKE MATH J, V111, P223