The metric dimension of the lexicographic product of graphs

被引:68
作者
Jannesari, Mohsen [1 ]
Omoomi, Behnaz [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
关键词
Lexicographic product; Resolving set; Metric dimension; Metric basis; Adjacency dimension;
D O I
10.1016/j.disc.2012.07.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a set W of vertices and a vertex v in a connected graph G, the k-vector r(w)(v) = (d(v , w(1)), ... , d(v, w(k))) is the metric representation of v with respect to W, where W = {w(1,) ... , w(k)} and d(x, y) is the distance between the vertices x and y. The set W is a resolving set for G if distinct vertices of G have distinct metric representations with respect to W. The minimum cardinality of a resolving set for G is its metric dimension. In this paper, we study the metric dimension of the lexicographic product of graphs G and H, denoted by G[H]. First, we introduce a new parameter, the adjacency dimension, of a graph. Then we obtain the metric dimension of G[H] in terms of the order of G and the adjacency dimension of H.
引用
收藏
页码:3349 / 3356
页数:8
相关论文
共 17 条
[1]   COMPLEXITY OF CANONICAL LABELING OF STRONGLY REGULAR GRAPHS [J].
BABAI, L .
SIAM JOURNAL ON COMPUTING, 1980, 9 (01) :212-216
[2]   Base size, metric dimension and other invariants of groups and graphs [J].
Bailey, Robert F. ;
Cameron, Peter J. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :209-242
[3]   On the dimension of trees [J].
Brigham, RC ;
Chartrand, G ;
Dutton, RD ;
Zhang, P .
DISCRETE MATHEMATICS, 2005, 294 (03) :279-283
[4]  
Buczkowski P.S., 2003, Period. Math. Hungar., V46, P9, DOI [DOI 10.1023/A:1025745406160, 10.1023/A:1025745406160]
[5]   On the metric dimension of cartesian products of graphs [J].
Caceres, Jose ;
Hernando, Carmen ;
Mora, Merce ;
Pelayo, Ignacio M. ;
Puertas, Maria L. ;
Seara, Carlos ;
Wood, David R. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (02) :423-441
[6]  
Chappell GG, 2008, ARS COMBINATORIA, V88, P349
[7]   Resolvability in graphs and the metric dimension of a graph [J].
Chartrand, G ;
Eroh, L ;
Johnson, MA ;
Oellermann, OR .
DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) :99-113
[8]  
Chartrand G, 2003, Congr. Numer., V160, P47
[9]  
Colbourn C.J., 1987, C NUMER, V56, P135
[10]  
Harary F., 1976, ARS COMBINATORIA, V2, P191, DOI DOI 10.1016/J.DAM.2012.10.018