Indefinite Einstein metrics on nice Lie groups

被引:9
作者
Conti, Diego [1 ]
Rossi, Federico A. [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
关键词
Einstein pseudoriemannian metrics; nilpotent Lie groups; nice Lie algebras; SOLVMANIFOLDS; ALGEBRAS;
D O I
10.1515/forum-2020-0049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a systematic method to produce left-invariant, non-Ricci-flat Einstein metrics of indefinite signature on nice nilpotent Lie groups. On a nice nilpotent Lie group, we give a simple algebraic characterization of non-Ricci-flat left-invariant Einstein metrics in both the class of metrics for which the nice basis is orthogonal and a more general class associated to order two permutations of the nice basis. We obtain classifications in dimension 8 and, under the assumption that the root matrix is surjective, dimension 9; moreover, we prove that Einstein nilpotent Lie groups of nonzero scalar curvature exist in every dimension >= 8.
引用
收藏
页码:1599 / 1619
页数:21
相关论文
共 50 条
[31]   Contact and Frobeniusian forms on Lie groups [J].
Goze, Michel ;
Remm, Elisabeth .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 :74-94
[32]   Nilpotent Lie groups and hyperbolic automorphisms [J].
Manoj Choudhuri ;
C. R. E. Raja .
Archiv der Mathematik, 2020, 115 :247-255
[33]   THE GEOMETRY OF FILIFORM NILPOTENT LIE GROUPS [J].
Kerr, Megan M. ;
Payne, Tracy L. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (05) :1587-1610
[34]   QUANTIZATION OF SEMISIMPLE REAL LIE GROUPS [J].
DE Commer, Kenny .
ARCHIVUM MATHEMATICUM, 2024, 60 (05) :285-310
[35]   SOBOLEV SPACES ON GRADED LIE GROUPS [J].
Fischer, Veronique ;
Ruzhansky, Michael .
ANNALES DE L INSTITUT FOURIER, 2017, 67 (04) :1671-1723
[36]   Lie theory and coverings of finite groups [J].
Majid, S. ;
Rietsch, K. .
JOURNAL OF ALGEBRA, 2013, 389 :137-150
[37]   Groups of Extended Affine Lie Type [J].
Azam, Saeid ;
Farahmand Parsa, Amir .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2019, 55 (03) :627-649
[38]   Distributional metrics and the action principle of Einstein-Hilbert gravity [J].
Huber, Albert .
CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (08)
[39]   Pseudo-Riemannian Einstein metrics on noncompact homogeneous spaces [J].
Yan, Zaili .
JOURNAL OF GEOMETRY, 2020, 111 (01)
[40]   Classification of invariant Einstein metrics on certain compact homogeneous spaces [J].
Yan, Zaili ;
Chen, Huibin ;
Deng, Shaoqiang .
SCIENCE CHINA-MATHEMATICS, 2020, 63 (04) :755-776