Indefinite Einstein metrics on nice Lie groups

被引:9
作者
Conti, Diego [1 ]
Rossi, Federico A. [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
关键词
Einstein pseudoriemannian metrics; nilpotent Lie groups; nice Lie algebras; SOLVMANIFOLDS; ALGEBRAS;
D O I
10.1515/forum-2020-0049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a systematic method to produce left-invariant, non-Ricci-flat Einstein metrics of indefinite signature on nice nilpotent Lie groups. On a nice nilpotent Lie group, we give a simple algebraic characterization of non-Ricci-flat left-invariant Einstein metrics in both the class of metrics for which the nice basis is orthogonal and a more general class associated to order two permutations of the nice basis. We obtain classifications in dimension 8 and, under the assumption that the root matrix is surjective, dimension 9; moreover, we prove that Einstein nilpotent Lie groups of nonzero scalar curvature exist in every dimension >= 8.
引用
收藏
页码:1599 / 1619
页数:21
相关论文
共 50 条
[21]   On Einstein extensions of nilpotent metric Lie algebras [J].
Yu. G. Nikonorov .
Siberian Advances in Mathematics, 2007, 17 (3) :153-170
[22]   Einstein Metrics on Bundles over Hyperkahler Manifolds [J].
Fowdar, Udhav .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 403 (01) :1-35
[23]   Locally conformally Kahler structures on unimodular Lie groups [J].
Andrada, A. ;
Origlia, M. .
GEOMETRIAE DEDICATA, 2015, 179 (01) :197-216
[24]   On Ricci Negative Lie Groups [J].
Lauret, Jorge ;
Will, Cynthia E. .
GEOMETRY, LIE THEORY AND APPLICATIONS, 2022, 16 :171-191
[25]   INVARIANT STRUCTURES ON LIE GROUPS [J].
Perez Alvarez, Javier .
JOURNAL OF GEOMETRIC MECHANICS, 2020, 12 (02) :141-148
[26]   A curve of nilpotent Lie algebras which are not Einstein nilradicals [J].
Will, Cynthia .
MONATSHEFTE FUR MATHEMATIK, 2010, 159 (04) :425-437
[27]   Nilpotent Lie groups and hyperbolic automorphisms [J].
Choudhuri, Manoj ;
Raja, C. R. E. .
ARCHIV DER MATHEMATIK, 2020, 115 (03) :247-255
[28]   On connected Lie groups and the approximation property [J].
Knudby, Soren .
COMPTES RENDUS MATHEMATIQUE, 2016, 354 (07) :697-699
[29]   Extension of transitive actions of Lie groups [J].
Gorbatsevich, V. V. .
IZVESTIYA MATHEMATICS, 2017, 81 (06) :1143-1154
[30]   Nets of standard subspaces on Lie groups [J].
Neeb, Karl-Hermann ;
Olafsson, Gestur .
ADVANCES IN MATHEMATICS, 2021, 384