Atomistic origin of exchange anisotropy in noncollinear γ-IrMn3-CoFe bilayers

被引:26
作者
Jenkins, Sarah [1 ]
Fan, Wei Jia [2 ,3 ,4 ]
Gaina, Roxana [1 ,5 ,6 ]
Chantrell, Roy W. [1 ]
Klemmer, Timothy [7 ]
Evans, Richard F. L. [1 ]
机构
[1] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
[2] Tongji Univ, Shanghai Key Lab Special Artificial Microstruct M, Shanghai 200092, Peoples R China
[3] Tongji Univ, Pohl Inst Solid State Phys, Shanghai 200092, Peoples R China
[4] Tongji Univ, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China
[5] Univ Fribourg, Dept Phys, Chemin Musee 3, CH-1700 Fribourg, Switzerland
[6] Univ Fribourg, Fribourg Ctr Nanomat, Chemin Musee 3, CH-1700 Fribourg, Switzerland
[7] Seagate Technol, Fremont, CA 94538 USA
关键词
BIAS; TORQUE; FILMS; MODEL;
D O I
10.1103/PhysRevB.102.140404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Antiferromagnetic spintronic devices could offer ultrafast dynamics and a higher data density than conventional ferromagnetic devices. One of the challenges in designing such devices is the control and detection of the magnetization of the antiferromagnet due to its lack of stray fields, and this is often achieved through the exchange bias effect. In exchange biased systems, the pinned spins are known to comprise a small fraction of the total number of interface spins, yet their exact nature and physical origin has so far been elusive. Here we show that in the technologically important disordered gamma-IrMn3-CoFe structure, the pinned spins arise from the small imbalance in the number of spins in each magnetic sublattice in the antiferromagnet due to the naturally occurring atomic disorder. These pinned spins are strongly coupled to the bulk antiferromagnet, explaining their stability. Moreover, we find that the ferromagnet strongly distorts the interface spin structure of the antiferromagnet, causing a large reversible interface magnetization that does not contribute to exchange bias but does increase the coercivity. We find that the uncompensated spins are not localized spins which occur due to point defects or domain walls but instead constitute a small motion of every antiferromagnet spin at the interface. This unexpected finding resolves one of the long-standing puzzles of exchange bias and provides a route to developing optimized nanoscale antiferromagnetic spintronic devices.
引用
收藏
页数:5
相关论文
共 32 条
  • [1] Electrical readout of the antiferromagnetic state of IrMn through anomalous Hall effect
    Asa, M.
    Rinaldi, C.
    Pazzocco, R.
    Petti, D.
    Albisetti, E.
    Bertacco, R.
    Cantoni, M.
    [J]. JOURNAL OF APPLIED PHYSICS, 2020, 128 (05)
  • [2] Antiferromagnetic spintronics
    Baltz, V.
    Manchon, A.
    Tsoi, M.
    Moriyama, T.
    Ono, T.
    Tserkovnyak, Y.
    [J]. REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
  • [3] Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films
    Bea, H.
    Bibes, M.
    Ott, F.
    Dupe, B.
    Zhu, X. -H.
    Petit, S.
    Fusil, S.
    Deranlot, C.
    Bouzehouane, K.
    Barthelemy, A.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (01)
  • [4] Exchange anisotropy - a review
    Berkowitz, AE
    Takano, K
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 200 (1-3) : 552 - 570
  • [5] Atomistic spin model simulations of magnetic nanomaterials
    Evans, R. F. L.
    Fan, W. J.
    Chureemart, P.
    Ostler, T. A.
    Ellis, M. O. A.
    Chantrell, R. W.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (10)
  • [6] Fukami S, 2016, NAT MATER, V15, P535, DOI [10.1038/NMAT4566, 10.1038/nmat4566]
  • [7] Langevin-dynamics study of the dynamical properties of small magnetic particles
    García-Palacios, JL
    Lázaro, FJ
    [J]. PHYSICAL REVIEW B, 1998, 58 (22) : 14937 - 14958
  • [8] Electrically induced and detected Neel vector reversal in a collinear antiferromagnet
    Godinho, J.
    Reichlova, H.
    Kriegner, D.
    Novak, V.
    Olejnik, K.
    Kaspar, Z.
    Soban, Z.
    Wadley, P.
    Campion, R. P.
    Otxoa, R. M.
    Roy, P. E.
    Zelezny, J.
    Jungwirth, T.
    Wunderlich, J.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [9] Neuromorphic spintronics
    Grollier, J.
    Querlioz, D.
    Camsari, K. Y.
    Everschor-Sitte, K.
    Fukami, S.
    Stiles, M. D.
    [J]. NATURE ELECTRONICS, 2020, 3 (07) : 360 - 370
  • [10] Monte Carlo simulations of magnetic ordering in the fcc kagome lattice
    Hemmati, V.
    Plumer, M. L.
    Whitehead, J. P.
    Southern, B. W.
    [J]. PHYSICAL REVIEW B, 2012, 86 (10):