Random matrix theory and critical phenomena in quantum spin chains

被引:7
作者
Hutchinson, J. [1 ]
Keating, J. P. [1 ]
Mezzadri, F. [1 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
TOEPLITZ DETERMINANTS; PHASE-TRANSITIONS; ENTANGLEMENT; SPECTRA; ORDER;
D O I
10.1103/PhysRevE.92.032106
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We compute critical properties of a general class of quantum spin chains which are quadratic in the Fermi operators and can be solved exactly under certain symmetry constraints related to the classical compact groups U(N), O(N), and Sp(2N). In particular we calculate critical exponents s, v, and z, corresponding to the energy gap, correlation length, and dynamic exponent, respectively. We also compute the ground state correlators <sigma(x)(i)sigma(x)(i+n)> g, <sigma(y)(i)sigma(y)(i+n)> g, and <Pi(n)(i=1)sigma(2)(i)> g, all of which display quasi-long-range order with a critical exponent dependent upon system parameters. Our approach establishes universality of the exponents for the class of systems in question.
引用
收藏
页数:6
相关论文
共 32 条
[1]   Random matrix theory of a chaotic Andreev quantum dot [J].
Altland, A ;
Zirnbauer, MR .
PHYSICAL REVIEW LETTERS, 1996, 76 (18) :3420-3423
[2]   Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures [J].
Altland, A ;
Zirnbauer, MR .
PHYSICAL REVIEW B, 1997, 55 (02) :1142-1161
[3]  
[Anonymous], 2007, EXACTLY SOLVED MODEL
[4]  
[Anonymous], 2011, The oxford handbook of random matrix theory
[5]  
[Anonymous], 2015, QUANTUM PHASE TRANSI
[6]   THE FISHER-HARTWIG CONJECTURE AND GENERALIZATIONS [J].
BASOR, EL ;
TRACY, CA .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1991, 177 (1-3) :167-173
[7]  
Beenakker CWJ., 2011, The Oxford Handbook of Random Matrix Theory, P723
[8]  
BEREZINSKII VL, 1971, SOV PHYS JETP-USSR, V32, P493
[9]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4
[10]  
Cardy J. L, 1996, CAMBRIDGE LECT NOTES