EEG/MEG Source Reconstruction with Spatial-Temporal Two-Way Regularized Regression

被引:2
作者
Tian, Tian Siva [1 ]
Huang, Jianhua Z. [2 ]
Shen, Haipeng [3 ]
Li, Zhimin [4 ]
机构
[1] Univ Houston, Dept Psychol, Houston, TX 77204 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[3] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
[4] Med Coll Wisconsin, Dept Neurol, Milwaukee, WI 53226 USA
基金
美国国家科学基金会;
关键词
Inverse problem; MEG; Graph Laplacian; Sparsity; Roughness penalization; Coordinate descent; INVERSE PROBLEM; ELECTROMAGNETIC TOMOGRAPHY; ELECTRICAL-ACTIVITY; MAGNETIC-FIELDS; MEG; MAGNETOENCEPHALOGRAPHY; LOCALIZATION; BRAIN; EEG; PENALIZATION;
D O I
10.1007/s12021-013-9193-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, we propose a spatial-temporal two-way regularized regression method for reconstructing neural source signals from EEG/MEG time course measurements. The proposed method estimates the dipole locations and amplitudes simultaneously through minimizing a single penalized least squares criterion. The novelty of our methodology is the simultaneous consideration of three desirable properties of the reconstructed source signals, that is, spatial focality, spatial smoothness, and temporal smoothness. The desirable properties are achieved by using three separate penalty functions in the penalized regression framework. Specifically, we impose a roughness penalty in the temporal domain for temporal smoothness, and a sparsity-inducing penalty and a graph Laplacian penalty in the spatial domain for spatial focality and smoothness. We develop a computational efficient multilevel block coordinate descent algorithm to implement the method. Using a simulation study with several settings of different spatial complexity and two real MEG examples, we show that the proposed method outperforms existing methods that use only a subset of the three penalty functions.
引用
收藏
页码:477 / 493
页数:17
相关论文
共 50 条
[1]  
Adde G., 2005, Int. J. Bioelectromagn, V7, P111
[2]  
[Anonymous], 1998, Spectra of graphs: Theory and applications
[3]  
[Anonymous], 2013, R LANG ENV STAT COMP
[4]  
[Anonymous], 2002, Algorithms for Minimization Without Derivatives
[5]   Bayesian analysis of the neuromagnetic inverse problem with lp-norm priors [J].
Auranen, T ;
Nummenmaa, A ;
Hämäläinen, MS ;
Jääskeläinen, IP ;
Lampinen, J ;
Vehtari, A ;
Sams, M .
NEUROIMAGE, 2005, 26 (03) :870-884
[6]   A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem [J].
Baillet, S ;
Garnero, L .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1997, 44 (05) :374-385
[7]   Laplacian eigenmaps for dimensionality reduction and data representation [J].
Belkin, M ;
Niyogi, P .
NEURAL COMPUTATION, 2003, 15 (06) :1373-1396
[8]   Space-time event sparse penalization for magneto-/electroencephalography [J].
Bolstad, Andrew ;
Van Veen, Barry ;
Nowak, Robert .
NEUROIMAGE, 2009, 46 (04) :1066-1081
[9]   Integrating sensory and motor mapping in a comprehensive MEG protocol: Clinical validity and replicability [J].
Castillo, EM ;
Simos, PG ;
Wheless, JW ;
Baumgartner, JE ;
Breier, JI ;
Billingsley, RL ;
Sarkari, S ;
Fitzgerald, ME ;
Papanicolaou, AC .
NEUROIMAGE, 2004, 21 (03) :973-983
[10]   MAGNETOENCEPHALOGRAPHY - EVIDENCE OF MAGNETIC FIELDS PRODUCED BY ALPHA-RHYTHM CURRENTS [J].
COHEN, D .
SCIENCE, 1968, 161 (3843) :784-&