Optimal design of single-photon sensor front-end electronics for fast-timing applications

被引:9
作者
Fernandez-Tenllado, J. M. [1 ,2 ]
Ballabriga, R. [1 ]
Campbell, M. [1 ]
Gascon, D. [2 ]
Gomez, S. [2 ]
Mauricio, J. [2 ]
机构
[1] CERN, Geneva, Switzerland
[2] ICCUB, Barcelona, Spain
来源
2019 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC) | 2019年
关键词
Silicon Photomultipliers; Front-end electronics; Fast timing; Time jitter; Segmentation;
D O I
10.1109/nss/mic42101.2019.9059805
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In the study presented, we focus on the contribution of the front-end electronics to the single-photon time resolution, particularly for Silicon Photomultipliers. We investigate from a simple model for current sensing front-ends, the impact of parameters such as detector capacitance, parasitic inductance in the interconnection and input impedance (equivalent RLC network) in the slew-rate of the signal on one side, and the interaction of series and parallel noise with the detector capacitance on the other side. Design equations for optimum input impedance and optimum front-end bandwidth are proposed, as well as design criteria to discern between RC or RLC input network, since optimum parameters may differ depending on the sensor-ASIC interconnection: either multi-channel architectures where the ASIC inputs are wire bonded to standard Silicon Photomultipliers, or hybrid implementations with vertical 3D integration of sensor and front-end electronics. The later case can greatly exploit segmentation of large area detectors as a strategy to minimize the time jitter. The study presented highlights time jitter improvement using small Silicon Photomultipliers, proposing analytical expressions to estimate the minimum number of micro-cells sharing common readout electronics that minimize time jitter.
引用
收藏
页数:5
相关论文
共 7 条
[1]   TRANSMISSION-LINE CONNECTIONS BETWEEN DETECTOR AND FRONT-END ELECTRONICS IN LIQUID ARGON CALORIMETRY [J].
CHASE, RL ;
DELATAILLE, C ;
RESCIA, S ;
SEGUIN, N .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1993, 330 (1-2) :228-242
[2]  
Ciciriello F, 2014, 2014 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC)
[3]  
Frach T., 2009, IEEE NUCL SCI S MED
[4]  
Ismail Y., 1998, DES AUT C 35 DAC
[5]  
Lecoq P., 2017, IEEE T RAD PLASMA ME, V1
[6]   Silicon Photomultipliers Electrical Model Extensive Analytical Analysis [J].
Marano, D. ;
Belluso, M. ;
Bonanno, G. ;
Billotta, S. ;
Grillo, A. ;
Garozzo, S. ;
Romeo, G. ;
Catalano, O. ;
La Rosa, G. ;
Sottile, G. ;
Impiombato, D. ;
Giarrusso, S. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2014, 61 (01) :23-34
[7]   Simulation of Silicon Photomultiplier Signals [J].
Seifert, Stefan ;
van Dam, Herman T. ;
Huizenga, Jan ;
Vinke, Ruud ;
Dendooven, Peter ;
Loehner, Herbert ;
Schaart, Dennis R. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2009, 56 (06) :3726-3733