Local and global minimizers for a variational energy involving a fractional norm

被引:117
作者
Palatucci, Giampiero [1 ,2 ]
Savin, Ovidiu [3 ]
Valdinoci, Enrico [4 ]
机构
[1] Univ Parma, Dipartimento Matemat, I-43124 Parma, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[3] Columbia Univ, Dept Math, New York, NY 10027 USA
[4] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
基金
美国国家科学基金会;
关键词
Phase transitions; Nonlocal energy; Gagliardo norm; Fractional Laplacian; CONJECTURE; EQUATIONS; SYMMETRY;
D O I
10.1007/s10231-011-0243-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study existence, uniqueness, and other geometric properties of the minimizers of the energy functional where denotes the total contribution from Omega in the H (s) norm of u and W is a double-well potential. We also deal with the solutions of the related fractional elliptic Allen-Cahn equation on the entire space . The results collected here will also be useful for forthcoming papers, where the second and the third author will study the I"-convergence and the density estimates for level sets of minimizers.
引用
收藏
页码:673 / 718
页数:46
相关论文
共 28 条
[1]   On a long-standing conjecture of E.!De Giorgi:: Symmetry in 3D for general nonlinearities and a local minimality property [J].
Alberti, G ;
Ambrosio, L ;
Cabré, X .
ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) :9-33
[2]   A nonlocal anisotropic model for phase transitions - Part I: The Optimal Profile Problem [J].
Alberti, G ;
Bellettini, G .
MATHEMATISCHE ANNALEN, 1998, 310 (03) :527-560
[3]  
ALBERTI G, 2000, ANN SCUOLA NORM SUP, V29, P457
[4]   Entire solutions of semilinear elliptic equations in R3 and a conjecture of De Giorgi [J].
Ambrosio, L ;
Cabré, X .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (04) :725-739
[5]   Gamma-convergence of nonlocal perimeter functionals [J].
Ambrosio, Luigi ;
De Philippis, Guido ;
Martinazzi, Luca .
MANUSCRIPTA MATHEMATICA, 2011, 134 (3-4) :377-403
[6]  
[Anonymous], 1989, J. Amer. Math. Soc.
[7]  
[Anonymous], DENSITY ESTIMA UNPUB
[8]  
BAERNSTEIN A, 1994, SYM MATH, V35, P47
[9]   Layer solutions in a half-space for boundary reactions [J].
Cabré, X ;
Solà-Morales, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (12) :1678-1732
[10]  
Cabre X., NONLINEAR EQUA UNPUB