Automated Method for Small-Animal PET Image Registration with Intrinsic Validation

被引:26
作者
Pascau, Javier [1 ]
Gispert, Juan Domingo [2 ]
Michaelides, Michael [3 ,4 ,5 ]
Thanos, Panayotis K. [3 ,4 ,6 ,7 ]
Volkow, Nora D. [4 ]
Vaquero, Juan Jose [1 ]
Soto-Montenegro, Maria Luisa [1 ]
Desco, Manuel [1 ]
机构
[1] Hosp Gen Gregorio Maranon, Unidad Med & Cirugia Expt, Madrid 28007, Spain
[2] CRC Corp Sanitaria, Inst Alta Tecnol, Barcelona 08003, Spain
[3] Brookhaven Natl Lab, Behav Neuropharmacol & Neuroimaging Lab, Dept Med, Upton, NY 11973 USA
[4] NIAAA, Lab Neuroimaging, Dept Hlth & Human Serv, NIH, Bethesda, MD 20892 USA
[5] SUNY Stony Brook, Dept Psychol, Stony Brook, NY 11794 USA
[6] SUNY Stony Brook, Dept Psychol, Stony Brook, NY 11794 USA
[7] SUNY Stony Brook, Dept Neurosci & Biomed Engn, Stony Brook, NY 11794 USA
关键词
Image registration; Positron emission tomography (PET); Validation; Algorithm; Rats; MUTUAL-INFORMATION; RAT-BRAIN; INTERPOLATION ARTIFACTS; PROBABILISTIC ATLASES; MICROPET; MRI; MAXIMIZATION;
D O I
10.1007/s11307-008-0166-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
We propose and compare different registration approaches to align small-animal PET studies and a procedure to validate the results by means of objective registration consistency measurements. Procedures: We have applied a registration algorithm based on information theory, using different approaches to mask the reference image. The registration consistency allows for the detection of incorrect registrations. This methodology has been evaluated on a test dataset (FDG-PET rat brain images). Results: The results show that a multiresolution two-step registration approach based on the use of the whole image at the low resolution step, while masking the brain at the high resolution step, provides the best robustness (87.5% registration success) and highest accuracy (0.67-mm average). Conclusions: The major advantages of our approach are minimal user interaction and automatic assessment of the registration error, avoiding visual inspection of the results, thus facilitating the accurate, objective, and rapid analysis of large groups of rodent PET images.
引用
收藏
页码:107 / 113
页数:7
相关论文
共 28 条
[1]   LEAST-SQUARES FITTING OF 2 3-D POINT SETS [J].
ARUN, KS ;
HUANG, TS ;
BLOSTEIN, SD .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1987, 9 (05) :699-700
[2]  
Casteels C, 2006, J NUCL MED, V47, P1858
[3]   Deformable and rigid registration of MRI and microPET images for photodynamic therapy of cancer in mice [J].
Fei, BW ;
Wang, HS ;
Muzic, RF ;
Flask, C ;
Wilson, DL ;
Duerk, JL ;
Feyes, DK ;
Oleinick, NL .
MEDICAL PHYSICS, 2006, 33 (03) :753-760
[4]   Predicting error in rigid-body point-based registration [J].
Fitzpatrick, JM ;
West, JB ;
Maurer, CR .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1998, 17 (05) :694-702
[5]  
Friston K., 1995, HUMAN BRAIN MAPPING, V2, P189, DOI DOI 10.1002/HBM.460020402
[6]   Spatial registration and normalization of images [J].
Friston, KJ ;
Ashburner, J ;
Frith, CD ;
Poline, JB ;
Heather, JD ;
Frackowiak, RSJ .
HUMAN BRAIN MAPPING, 1995, 3 (03) :165-189
[7]   Influence of the normalization template on the outcome of statistical parametric mapping of PET scans [J].
Gispert, JD ;
Pascau, J ;
Reig, S ;
Martínez-Lázaro, R ;
Molina, V ;
García-Barreno, P ;
Desco, M .
NEUROIMAGE, 2003, 19 (03) :601-612
[8]   Medical image registration [J].
Hill, DLG ;
Batchelor, PG ;
Holden, M ;
Hawkes, DJ .
PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (03) :R1-R45
[9]   Voxel similarity measures for 3-D serial MR brain image registration [J].
Holden, M ;
Hill, DLG ;
Denton, ERE ;
Jarosz, JM ;
Cox, TCS ;
Rohlfing, T ;
Goodey, J ;
Hawkes, DJ .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2000, 19 (02) :94-102
[10]   Multimodality image registration by maximization of mutual information [J].
Maes, F ;
Collignon, A ;
Vandermeulen, D ;
Marchal, G ;
Suetens, P .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997, 16 (02) :187-198