Divided differences and generalized Taylor series

被引:10
作者
Chu Wenchang [1 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
关键词
D O I
10.1515/FORUM.2008.050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By combining divided differences with symmetric function relations, we establish two expansion formulae which generalize the classical Taylor theorem and the Maclauren expansion formula. The two q-expansion formulae due to Carlitz ( 1973) and Liu ( 2002) are also contained as special cases.
引用
收藏
页码:1097 / 1108
页数:12
相关论文
共 22 条
[1]   IDENTITIES IN COMBINATORICS .2. Q-ANALOG OF LAGRANGE INVERSION THEOREM [J].
ANDREWS, GE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 53 (01) :240-245
[2]   A MATRIX INVERSE [J].
BRESSOUD, DM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :446-448
[3]   SOME INVERSE RELATIONS [J].
CARLITZ, L .
DUKE MATHEMATICAL JOURNAL, 1973, 40 (04) :893-901
[4]  
Carlitz L, 1973, GLAS MAT, V8, P205
[5]  
Chu WC, 1999, B UNIONE MAT ITAL, V2B, P609
[6]  
CHU WC, 1995, FORUM MATH, V7, P117
[7]  
CHU WC, 1993, B UNIONE MAT ITAL, V7B, P737
[8]   q-Derivative Operators and Basic Hypergeometric Series [J].
Chu Wenchang .
RESULTS IN MATHEMATICS, 2006, 49 (1-2) :25-44
[9]   OPERATOR METHODS FOR Q-IDENTITIES .3. UMBRAL INVERSION AND LANGRANGE FORMULA [J].
CIGLER, J .
ARCHIV DER MATHEMATIK, 1980, 35 (06) :533-543
[10]  
Garsia Adriano M., 1981, HOUSTON J MATH, V7, P205