A derivative-free algorithm for linearly constrained finite minimax problems

被引:33
|
作者
Liuzzi, G
Lucidi, S
Sciandrone, M
机构
[1] Univ Roma La Sapienza, Dipartimento Informat & Sistemist A Ruberti, I-00185 Rome, Italy
[2] CNR, Ist Anal Sistemi & Informat, I-00185 Rome, Italy
关键词
derivative-free optimization; linearly constrained finite minimax problems; nonsmooth optimization;
D O I
10.1137/040615821
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a new derivative-free algorithm for linearly constrained finite minimax problems. Due to the nonsmoothness of this class of problems, standard derivative-free algorithms can locate only points which satisfy weak necessary optimality conditions. In this work we define a new derivative-free algorithm which is globally convergent toward standard stationary points of the finite minimax problem. To this end, we convert the original problem into a smooth one by using a smoothing technique based on the exponential penalty function of Kort and Bertsekas. This technique depends on a smoothing parameter which controls the approximation to the finite minimax problem. The proposed method is based on a sampling of the smooth function along a suitable search direction and on a particular updating rule for the smoothing parameter that depends on the sampling stepsize. Numerical results on a set of standard minimax test problems are reported.
引用
收藏
页码:1054 / 1075
页数:22
相关论文
共 50 条
  • [1] A derivative-free algorithm for linearly constrained optimization problems
    Gumma, E. A. E.
    Hashim, M. H. A.
    Ali, M. Montaz
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 57 (03) : 599 - 621
  • [2] A derivative-free algorithm for linearly constrained optimization problems
    E. A. E. Gumma
    M. H. A. Hashim
    M. Montaz Ali
    Computational Optimization and Applications, 2014, 57 : 599 - 621
  • [3] A derivative-free approximate gradient sampling algorithm for finite minimax problems
    Hare, W.
    Nutini, J.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 56 (01) : 1 - 38
  • [4] A derivative-free approximate gradient sampling algorithm for finite minimax problems
    W. Hare
    J. Nutini
    Computational Optimization and Applications, 2013, 56 : 1 - 38
  • [5] Derivative-free optimization methods for finite minimax problems
    Hare, Warren
    Macklem, Mason
    OPTIMIZATION METHODS & SOFTWARE, 2013, 28 (02) : 300 - 312
  • [6] A derivative-free method for linearly constrained nonsmooth optimization
    Bagirov, Adil M.
    Ghosh, Moumita
    Webb, Dean
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2006, 2 (03) : 319 - 338
  • [7] A derivative-free -algorithm for convex finite-max problems
    Hare, Warren
    Planiden, Chayne
    Sagastizabal, Claudia
    OPTIMIZATION METHODS & SOFTWARE, 2020, 35 (03) : 521 - 559
  • [8] A derivative-free algorithm for spherically constrained optimization
    Min Xi
    Wenyu Sun
    Yannan Chen
    Hailin Sun
    Journal of Global Optimization, 2020, 76 : 841 - 861
  • [9] A derivative-free algorithm for spherically constrained optimization
    Xi, Min
    Sun, Wenyu
    Chen, Yannan
    Sun, Hailin
    JOURNAL OF GLOBAL OPTIMIZATION, 2020, 76 (04) : 841 - 861
  • [10] PSwarm: a hybrid solver for linearly constrained global derivative-free optimization
    Vaz, A. I. F.
    Vicente, L. N.
    OPTIMIZATION METHODS & SOFTWARE, 2009, 24 (4-5) : 669 - 685