The world of the complex Ginzburg-Landau equation

被引:1506
作者
Aranson, IS
Kramer, L
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany
关键词
D O I
10.1103/RevModPhys.74.99
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The cubic complex Ginzburg-Landau equation is one of the most-studied nonlinear equations in the physics community. It describes a vast variety of phenomena from nonlinear waves to second-order phase transitions, from superconductivity, superfluidity, and Bose-Einstein condensation to liquid crystals and strings in field theory. The authors give an overview of various phenomena described by the complex Ginzburg-Landau equation in one, two, and three dimensions from the point of view of condensed-matter physicists. Their aim is to study the relevant solutions in order to gain insight into nonequilibrium phenomena in spatially extended systems.
引用
收藏
页码:99 / 143
页数:45
相关论文
共 339 条
[61]   Supertransient chaos in the two-dimensional complex Ginzburg-Landau equation [J].
Braun, R ;
Feudel, F .
PHYSICAL REVIEW E, 1996, 53 (06) :6562-6565
[62]   INTERMITTENCY THROUGH MODULATIONAL INSTABILITY [J].
BRETHERTON, CS ;
SPIEGEL, EA .
PHYSICS LETTERS A, 1983, 96 (03) :152-156
[63]   Absolute and convective instabilities of spatially periodic flows [J].
Brevdo, L ;
Bridges, TJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 354 (1710) :1027-1064
[64]   EVOLUTION OF PATTERNS IN THE ANISOTROPIC COMPLEX GINZBURG-LANDAU EQUATION - MODULATIONAL INSTABILITY [J].
BROWN, R ;
FABRIKANT, AL ;
RABINOVICH, MI .
PHYSICAL REVIEW E, 1993, 47 (06) :4141-4150
[65]   LONG-RANGE ORDER WITH LOCAL CHAOS IN LATTICES OF DIFFUSIVELY COUPLED ODES [J].
BRUNNET, L ;
CHATE, H ;
MANNEVILLE, P .
PHYSICA D, 1994, 78 (3-4) :141-154
[66]   Modulated amplitude waves and defect formation in the one-dimensional complex Ginzburg-Landau equation [J].
Brusch, L ;
Torcini, A ;
van Hecke, M ;
Zimmermann, MG ;
Bär, M .
PHYSICA D-NONLINEAR PHENOMENA, 2001, 160 (3-4) :127-148
[67]   Modulated amplitude waves and the transition from phase to defect chaos [J].
Brusch, L ;
Zimmermann, MG ;
van Hecke, M ;
Bär, M ;
Torcini, A .
PHYSICAL REVIEW LETTERS, 2000, 85 (01) :86-89
[68]  
BRUSCH L, 2001, UNPUB
[69]  
Buka A., 1996, PATTERN FORMATION LI
[70]   Bekki-Nozaki amplitude holes in hydrothermal nonlinear waves [J].
Burguete, J ;
Chaté, H ;
Daviaud, F ;
Mukolobwiez, N .
PHYSICAL REVIEW LETTERS, 1999, 82 (16) :3252-3255