The world of the complex Ginzburg-Landau equation

被引:1468
|
作者
Aranson, IS
Kramer, L
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany
关键词
D O I
10.1103/RevModPhys.74.99
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The cubic complex Ginzburg-Landau equation is one of the most-studied nonlinear equations in the physics community. It describes a vast variety of phenomena from nonlinear waves to second-order phase transitions, from superconductivity, superfluidity, and Bose-Einstein condensation to liquid crystals and strings in field theory. The authors give an overview of various phenomena described by the complex Ginzburg-Landau equation in one, two, and three dimensions from the point of view of condensed-matter physicists. Their aim is to study the relevant solutions in order to gain insight into nonequilibrium phenomena in spatially extended systems.
引用
收藏
页码:99 / 143
页数:45
相关论文
共 50 条
  • [1] ON THE INVARIANTS OF THE COMPLEX GINZBURG-LANDAU EQUATION
    MAGEN, M
    ROSENAU, P
    PHYSICS LETTERS A, 1984, 104 (09) : 444 - 446
  • [2] A COMPLEX GINZBURG-LANDAU EQUATION IN MAGNETISM
    ZUBRZYCKI, A
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1995, 150 (02) : L143 - L145
  • [3] The complex Ginzburg-Landau equation: an introduction
    Garcia-Morales, Vladimir
    Krischer, Katharina
    CONTEMPORARY PHYSICS, 2012, 53 (02) : 79 - 95
  • [4] POTENTIAL FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    GRAHAM, R
    TEL, T
    EUROPHYSICS LETTERS, 1990, 13 (08): : 715 - 720
  • [5] TRAVELING WAVES IN THE COMPLEX GINZBURG-LANDAU EQUATION
    DOELMAN, A
    JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (02) : 225 - 266
  • [6] DYNAMICS OF DEFECTS IN THE COMPLEX GINZBURG-LANDAU EQUATION
    RICA, S
    TIRAPEGUI, E
    PHYSICA D, 1992, 61 (1-4): : 246 - 252
  • [7] HOMOCLINIC EXPLOSIONS IN THE COMPLEX GINZBURG-LANDAU EQUATION
    LUCE, BP
    PHYSICA D, 1995, 84 (3-4): : 553 - 581
  • [8] Controlling turbulence in the complex Ginzburg-Landau equation
    Xiao, JH
    Hu, G
    Yang, JZ
    Gao, JH
    PHYSICAL REVIEW LETTERS, 1998, 81 (25) : 5552 - 5555
  • [9] Inviscid limits of the complex Ginzburg-Landau equation
    Bechouche, P
    Jüngel, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (01) : 201 - 226
  • [10] Taming turbulence in the complex Ginzburg-Landau equation
    Zhan, Meng
    Zou, Wei
    Liu, Xu
    PHYSICAL REVIEW E, 2010, 81 (03):