Nonsmooth Optimization Techniques on Riemannian Manifolds

被引:14
作者
Hosseini, S. [1 ]
Pouryayevali, M. R. [1 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Ekeland variational principle; Contingent cone; Metric regularity; Generalized gradient; Riemannian manifolds; PROXIMAL POINT ALGORITHM; VECTOR-FIELDS; LIPSCHITZ; MONOTONE;
D O I
10.1007/s10957-012-0250-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present the notion of weakly metrically regular functions on manifolds. Then, a sufficient condition for a real valued function defined on a complete Riemannian manifold to be weakly metrically regular is obtained, and two optimization problems on Riemannian manifolds are considered. Moreover, we present a generalization of the Palais-Smale condition for lower semicontinuous functions defined on manifolds. Then, we use this notion to obtain necessary conditions of optimality for a general minimization problem on complete Riemannian manifolds.
引用
收藏
页码:328 / 342
页数:15
相关论文
共 23 条
[1]  
[Anonymous], 1998, Variational Analysis
[2]  
[Anonymous], 2000, CMS BOOKS MATH
[3]   Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds [J].
Azagra, D ;
Ferrera, J ;
López-Mesas, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 220 (02) :304-361
[4]   Proximal calculus on Riemannian manifolds [J].
Azagra, Daniel ;
Ferrera, Juan .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2005, 2 (04) :437-450
[5]   On the metric projection onto φ-convex subsets of Hadamard manifolds [J].
Barani, A. ;
Hosseini, S. ;
Pouryayevali, M. R. .
REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (02) :815-826
[6]   Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds [J].
Bento, G. C. ;
Ferreira, O. P. ;
Oliveira, P. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) :564-572
[7]   VARIATIONAL-METHODS FOR NON-DIFFERENTIABLE FUNCTIONALS AND THEIR APPLICATIONS TO PARTIAL-DIFFERENTIAL EQUATIONS [J].
CHANG, KC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (01) :102-129
[8]  
CLARKE F. H., 1998, GRAD TEXT M, V178
[9]   Dini derivative and a characterization for Lipschitz and convex functions on Riemannian manifolds [J].
Ferreira, O. P. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (06) :1517-1528
[10]   Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds [J].
Ferreira, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 313 (02) :587-597