Nearly Quartic Mappings in β-Homogeneous F-Spaces

被引:15
作者
Chang, I. S. [1 ]
Eshaghi Gordji, M. [2 ]
Khodaei, H. [2 ]
Kim, H. M. [3 ]
机构
[1] Mokwon Univ, Dept Math, Taejon 305729, South Korea
[2] Semnan Univ, Dept Math, Semnan, Iran
[3] Chungnam Natl Univ, Dept Math, Taejon 305764, South Korea
关键词
Stability; quartic mapping; F-space; ULAM-RASSIAS STABILITY; EQUATION;
D O I
10.1007/s00025-011-0215-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the Hyers-Ulam stability of the following quartic equation in beta-homogeneous F-spaces.
引用
收藏
页码:529 / 541
页数:13
相关论文
共 16 条
[1]  
[Anonymous], 1940, PROBLEMS MODERN MATH
[2]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
[3]   ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES [J].
CZERWIK, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 :59-64
[4]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[5]   Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces [J].
Gordji, M. Eshaghi ;
Khodaei, H. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) :5629-5643
[6]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[7]   Some further generalizations of the Hyers-Ulam-Rassias stability of functional equations [J].
Jian, W .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :406-423
[8]   The generalized Hyers-Ulam-Rassias stability of a cubic functional equation [J].
Jun, KW ;
Kim, HM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 274 (02) :867-878
[9]   Hyers-Ulam-Rassias stability of Jensen's equation and its application [J].
Jung, SM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (11) :3137-3143
[10]  
Kominek Z., 1989, Demonstratio Math., V22, P499