On periodic Hamiltonian elliptic systems with spectrum point zero

被引:3
作者
Sun, Juntao [1 ]
Chen, Haibo [2 ]
Chu, Jifeng [3 ]
机构
[1] Shandong Univ Technol, Dept Math, Sch Sci, Zibo 255049, Shandong, Peoples R China
[2] Cent S Univ, Dept Math, Changsha 410075, Hunan, Peoples R China
[3] Hohai Univ, Coll Sci, Dept Math, Nanjing 210098, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Hamiltonian elliptic systems; strongly indefinite functionals; asymptotically quadratic; superquadratic; variational methods; SCHRODINGER-EQUATIONS; MULTIPLE SOLUTIONS; EXISTENCE; SYMMETRY;
D O I
10.1002/mana.201000134
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the existence and multiplicity of solutions for a class of periodic Hamiltonian elliptic systems with spectrum point zero. By applying two recent critical point theorems for strongly indefinite functionals, we present some new criteria to guarantee that Hamiltonian elliptic systems with spectrum point zero have a ground state solution and infinitely many geometrically distinct solutions when the potential satisfies the asymptotically quadratic and weak superquadratic conditions, respectively. Some recent results are extended and improved. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:2233 / 2251
页数:19
相关论文
共 29 条
[11]  
de Figueiredo DG, 2008, HBK DIFF EQUAT STATI, V5, P1, DOI 10.1016/S1874-5733(08)80008-3
[12]  
Ding Y., 2007, INTERDISCIP MATH SCI, V7
[13]   Solutions of a system of diffusion equations [J].
Ding, Yanheng ;
Luan, Shixia ;
Willem, Michel .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2007, 2 (01) :117-139
[14]   Multiple solutions of Schrodinger equations with indefinite linear part and super or asymptotically linear terms [J].
Ding, YH ;
Lee, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (01) :137-163
[15]   Homoclinic orbits of a Hamiltonian system [J].
Ding, YH ;
Willem, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (05) :759-778
[16]   ON THE NUMBER OF SOLUTIONS OF NONLINEAR SCHRODINGER-EQUATIONS AND ON UNIQUE CONTINUATION [J].
HEINZ, HP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 116 (01) :149-171
[17]   DIFFERENTIAL-SYSTEMS WITH STRONGLY INDEFINITE VARIATIONAL STRUCTURE [J].
HULSHOF, J ;
VANDERVORST, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 114 (01) :32-58
[18]   An infinite dimensional morse theory with applications [J].
Kryszewski, W ;
Szulkin, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (08) :3181-3234
[19]  
Nagasawa M., 1993, SCHRODINGER EQUATION
[20]  
Pankov, 2005, MILAN J MATH, V73, P259, DOI DOI 10.1007/s00032-005-0047-8