Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics

被引:1127
作者
Wang, Sihong [1 ]
Lin, Long [1 ]
Wang, Zhong Lin [1 ,2 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing, Peoples R China
关键词
Energy harvesting; triboelectric nanogenerator; self-powered system; lithium ion battery; NANOGENERATOR; GENERATOR; STRESSES; DRIVEN;
D O I
10.1021/nl303573d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Harvesting energy from our living environment is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, or implanted electronics. Mechanical energy scavenging based on triboelectric effect has been proven to be simple, cost-effective, and robust. However, its output is still insufficient for sustainably driving electronic devices/systems. Here, we demonstrated a rationally designed arch-shaped triboelectric nanogenerator (TENG) by utilizing the contact electrification between a polymer thin film and a metal thin foil. The working mechanism of the TENG was studied by finite element simulation. The output voltage, current density, and energy volume density reached 230 V, 15.5 mu A/cm(2), and 128 mW/cm(3), respectively, and an energy conversion efficiency as high as 10-39% has been demonstrated. The TENG was systematically studied and demonstrated as a sustainable power source that can not only drive instantaneous operation of light-emitting diodes (LEDs) but also charge a lithium ion battery as a regulated power module for powering a wireless sensor system and a commercial cell phone, which is the first demonstration of the nanogenerator for driving personal mobile electronics, opening the chapter of impacting general people's life by nanogenerators.
引用
收藏
页码:6339 / 6346
页数:8
相关论文
共 30 条
[1]   Energy conservation in wireless sensor networks: A survey [J].
Anastasi, Giuseppe ;
Conti, Marco ;
Di Francesco, Mario ;
Passarella, Andrea .
AD HOC NETWORKS, 2009, 7 (03) :537-568
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Progress in Carbon Nanotube Electronics and Photonics [J].
Avouris, Phaedon ;
Martel, Richard .
MRS BULLETIN, 2010, 35 (04) :306-313
[4]   A micro electromagnetic generator for vibration energy harvesting [J].
Beeby, S. P. ;
Torah, R. N. ;
Tudor, M. J. ;
Glynne-Jones, P. ;
O'Donnell, T. ;
Saha, C. R. ;
Roy, S. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (07) :1257-1265
[5]   Contact charging between insulators [J].
Castle, GSP .
JOURNAL OF ELECTROSTATICS, 1997, 40-1 :13-20
[6]   Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency [J].
Chang, Chieh ;
Tran, Van H. ;
Wang, Junbo ;
Fuh, Yiin-Kuen ;
Lin, Liwei .
NANO LETTERS, 2010, 10 (02) :726-731
[7]  
Cross J. A., 1987, ELECTROSTATICS PRINC, p[xii, 500]
[8]   A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties [J].
Diaz, AF ;
Felix-Navarro, RM .
JOURNAL OF ELECTROSTATICS, 2004, 62 (04) :277-290
[9]   Silicon-Based Plasmonics for On-Chip Photonics [J].
Dionne, Jennifer A. ;
Sweatlock, Luke A. ;
Sheldon, Matthew T. ;
Alivisatos, A. Paul ;
Atwater, Harry A. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2010, 16 (01) :295-306
[10]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334