Shrinkage Estimation Under Multivariate Elliptic Models

被引:0
|
作者
Arashi, M. [1 ]
Khan, Shahjahan [2 ]
Tabatabaey, S. M. M. [3 ]
Soleimani, H. [3 ]
机构
[1] Shahrood Univ Technol, Fac Math, Shahrood, Iran
[2] Univ So Queensland, Australian Ctr Sustainable Catchments, Dept Math & Comp, Toowoomba, Qld 4350, Australia
[3] Ferdowsi Univ Mashhad, Fac Math Sci, Dept Stat, Mashhad, Iran
关键词
Bias and risk functions; Elliptically contoured distributions; Hotteling's T; (2) statistic; Quadratic loss; Stein-type and Positive-rule shrinkage estimators; Primary; 62H12; Secondary; 62F10; LINEAR-REGRESSION MODELS; DISTRIBUTIONS; DISTURBANCES; VARIANCE;
D O I
10.1080/03610926.2011.602492
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The estimation of the location vector of a p-variate elliptically contoured distribution (ECD) is considered using independent random samples from two multivariate elliptically contoured populations when it is apriori suspected that the location vectors of the two populations are equal. For the setting where the covariance structure of the populations is the same, we define the maximum likelihood, Stein-type shrinkage and positive-rule shrinkage estimators. The exact expressions for the bias and quadratic risk functions of the estimators are derived. The comparison of the quadratic risk functions reveals the dominance of the Stein-type estimators if p3. A graphical illustration of the risk functions under a typical member of the elliptically contoured family of distributions is provided to confirm the analytical results.
引用
收藏
页码:2084 / 2103
页数:20
相关论文
共 50 条
  • [21] Optimal Estimation of Multivariate ARMA Models
    White, Martha
    Wen, Junfeng
    Bowling, Michael
    Schuurmans, Dale
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 3080 - 3086
  • [22] Robust estimation for multivariate wrapped models
    Giovanni Saraceno
    Claudio Agostinelli
    Luca Greco
    METRON, 2021, 79 : 225 - 240
  • [23] Robust estimation for multivariate wrapped models
    Saraceno, Giovanni
    Agostinelli, Claudio
    Greco, Luca
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2021, 79 (02): : 225 - 240
  • [24] HIGH-DIMENSIONAL COVARIANCE MATRICES UNDER DYNAMIC VOLATILITY MODELS: ASYMPTOTICS AND SHRINKAGE ESTIMATION
    Ding, Yi
    Zheng, Xinghua
    ANNALS OF STATISTICS, 2024, 52 (03): : 1027 - 1049
  • [25] Multivariate sparse Laplacian shrinkage for joint estimation of two graphical structures
    Yang, Yuehan
    Xia, Siwei
    Yang, Hu
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 178
  • [26] Shrinkage estimation of location parameters in a multivariate skew-normal distribution
    Kubokawa, Tatsuya
    Strawderman, William E.
    Yuasa, Ryota
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (08) : 2008 - 2024
  • [27] Preservation of multivariate dependence under multivariate claim models
    Hu, TZ
    Pan, XM
    INSURANCE MATHEMATICS & ECONOMICS, 1999, 25 (02): : 171 - 179
  • [28] Predictive densities for multivariate normal models based on extended models and shrinkage Bayes methods
    Okudo, Michiko
    Komaki, Fumiyasu
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02): : 3310 - 3326
  • [29] Small area estimation of average compositions under multivariate nested error regression models
    María Dolores Esteban
    María José Lombardía
    Esther López-Vizcaíno
    Domingo Morales
    Agustín Pérez
    TEST, 2023, 32 : 651 - 676
  • [30] Small area estimation of average compositions under multivariate nested error regression models
    Dolores Esteban, Maria
    Lombardia, Maria Jose
    Lopez-Vizcaino, Esther
    Morales, Domingo
    Perez, Agustin
    TEST, 2023, 32 (02) : 651 - 676